Antoine Michael Diego Jost
Contact
Antoine JOSTENSCBP – I2M
16, av. Pey-Berland
33607 Pessac CEDEX
France
antoine.jost@u-bordeaux.fr
Positions
- Post-doct. at I2M, March 2020 – Present. Numerical Methods & Fluid-Structure Interaction.
- Development of Semi-implicit numerical schemes for Eulerian Fluid-Structure Interaction.
- Supervisor: Thomas Milcent
- Post-doct. at I2M, September 2018 – March 2020. Numerical Methods & Immersed Boundary Methods (IBMs)
- Project #1: Numerical methods for massively parallel simulations applied to nanoparticle processing
- Project #2: Improvements to direct forcing ghost node immersed boundary method.
- Supervisor: Stéphane Glockner, Antoine Lemoine, Arnaud Erriguible
- Ph.D. at Florida Institute of Technology (FIT), January 2015 – July 2018. Direct Numerical Simulations of Incompressible Flow through Porous Packs over a wide Range of Reynolds Numbers
- Project: Investigate macroscopic integrated quantities and temporal and spatial length scales of laminar, transitional, and turbulent flow in periodic ordered and random particle packs
- Code developed: high-order imcompressible Navier-Stokes flow solver with adaptive mesh refinement, static and dynamic LES, and ghost cell IBM.
- Supervisor: Ju Zhang
- Additional Project: Further development to compressible multiphase Euler code RocSDT.
- M.S. in Aerospace Engineering at FIT, Numerical Study of Intermittent Bursting of a Laminar Separation Bubble on a NACA 643-618 Airfoil
- Project: Investigate the different spatial and temporal laminar separation bubble and vortex shedding behaviors for three different angles of attack for a NACA 643-618 Airfoil.
- Fluid mechanics, turbulence, numerical analysis, finite volume method, high-order methods, high-performance computing
- Supervisor: Ju Zhang
Research interests
Physics
- Compressible & Incompressible Navier-Stokes
- Low Reynolds number flows
- Turbulence
- Flows over biological surfaces
Numerics
- High Performance Computing
- Immersed Boundary Method
- High-order Numerical Schemes
- Adaptive Mesh Refinement
- GPGPU (GPU computing)
Papers
- Peer-reviewed Journals
- Jost, A.M.D., Glockner, S., and Erriguible, A., 2020, Direct numerical simulations of fluids mixing above mixture critical point, accepted in Journal of Supercritical Fluids.
- Jost, A.M.D., and Glockner, S., 2020, Direct forcing immersed boundary method : Improvements to the Ghost Node Method, submitted to Journal of Computational Physics.
- Jackson, T.L., Jost, A.M., Zhang, J., Sridharan, P. and Amadio, G., 2017. Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics. Combustion Theory and Modelling, pp.1-25.
- Zhang, J., Jackson, T.L. and Jost, A.M.D., 2017. Effects of air chemistry and stiffened EOS of air in numerical simulations of bubble collapse in water. Physical Review Fluids, 2(5), p.053603.
- Peer-reviewed Conferences
- Jost, A. and Zhang, J., 2015. Numerical Study of Intermittent Laminar Bubble Bursting and Vortex Shedding on an NACA 64_3-618 Airfoil. In 53rd AIAA Aerospace Sciences Meeting (p. 1032).
- Jost, A., Zhang, J. and Jackson, T.L., 2015. GPU Parallelization of a High Order Immersed Boundary Method Fluid Solver. In 22nd AIAA Computational Fluid Dynamics Conference (p. 3056).
- Jost, A., Zhang, J. and Jackson, T.L., 2016. Incompressible Flow Solver with Ghost-Cell Immersed Boundary Method and Adaptive Mesh Refinement. In 46th AIAA Fluid Dynamics Conference (p.3328)
- Jackson, T.L., Jost, A.M., Zhang, J., Sridharan, P. and Amadio, G., 2017, June. Three-dimensional Mesoscale Simulations of Detonation Initiation in Energetic Materials with Density-based Kinetics. In APS Shock Compression of Condensed Matter Meeting Abstracts.