An accurate numerical method for computing surface tension forces in CFD codes
Numerical experiments with surface tension

M. Coquerelle1 \quad S. Glockner1

1Numerical Fluid Mechanics (MFN), département TREFLE, laboratoire I2M
Bordeaux INP & Université de Bordeaux

MicroMast, sept. 8th 2016
Accurate numerical method for computing surface tension

1 Context and motivations
 - Context: ocean waves attenuation by falling rain drops
 - The failling drop: a (not so) simple problem
 - Simulate surface tension

2 Numerical solutions
 - Be careful...
 - What we propose
 - Numerical results
 - Applications

3 Conclusion
Context: ocean waves attenuation by falling rain drops

Figure: 10^1 s, 10^1 m

Figure: 10^0 s, 10^0 m

Figure: 10^{-2} s, 10^{-2} m

Waves 10 000 drops/s ➔ Small waves 100 drops/s ➔ Flat plane 0.1 drop/s
Context: ocean waves attenuation by falling rain drops

Difficulties
- Large time and spatial scales
- Sensitive, turbulent
- Measures

Needs (for simulations)
- Meso and micro numerical models
- Appropriate numerical methods
 - Accurate and efficient

Project leaders
M. Coquerelle (I2M), S. Glockner (I2M), P. Lubin (I2M), L. Mieussens (IMB), F. Véron (U. Delaware)
A (not so) simple problem

The falling of a rain drop: **surface tension dominated**

1. What is its **terminal velocity**?
2. What is the **dynamic of the impact**?

Classical numerical methods

- Fail to solve (1)
- Introduce errors in (2)
Aparté: what is the numerical convergence?

What we expect

Refine the discretization/mesh \Rightarrow Get better results

Precision \Rightarrow Accuracy
Aparté: what is the numerical convergence?

What we expect

Refine the discretization/mesh → Get better results

Precision → Accuracy

Example of convergence: approximation of π

<table>
<thead>
<tr>
<th>h</th>
<th>h/10^1</th>
<th>h/10^2</th>
<th>h/10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.3</td>
<td>3.19</td>
<td>3.142</td>
</tr>
</tbody>
</table>

Example of non-convergence: approximation of π

<table>
<thead>
<tr>
<th>h</th>
<th>h/10^1</th>
<th>h/10^2</th>
<th>h/10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.2</td>
<td>3.48</td>
<td>4.217</td>
</tr>
</tbody>
</table>
Aparté: what is the numerical convergence?

What we expect

Refine the discretization/mesh ⇒ Get better results

Precision ⇒ Accuracy

Figure: The equilibrium of a flat surface, parasitic currents
Order 1: $h/2 \rightarrow \text{error}/2$
Modeling surface tension

A boundary condition between 2 fluids

Young-Laplace law:

\[\Delta p = \sigma \kappa \]

\[\kappa = \left(\frac{1}{R_1} + \frac{1}{R_2} \right) / 2, \text{ the mean curvature, is purely geometric} \]

Figure: Surface tension force (extracted from [Brackbill1990])

The (1-fluid) incompressible Navier-Stokes equations

\[\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) + \mathbf{f} + \sigma \kappa \mathbf{n} \delta S \]

\[\nabla \cdot \mathbf{u} = 0 \quad \text{and} \quad \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = 0 \]
Computing the surface tension forces

As $R \to 0$, $\kappa \to \infty$

Also as $h \to 0$, $\kappa \to \infty$

$\kappa \to \infty \Rightarrow \Delta p \to \infty$

Barriers

- High gradients/discontinuities
 - **Tough** for numerical methods
 - Errors in computing $\kappa \Rightarrow$ errors in the simulation
Computing the surface tension forces

Diving into details

As $R \to 0, \kappa \to \infty$

Also as $h \to 0, \kappa \to \infty$

$\kappa \to \infty \Rightarrow \Delta p \to \infty$

In fact, when surface tension is important...

- Big errors in $\kappa \Rightarrow$ severe errors in the simulation
- (numerical) parasitic/spurious currents are $O(\kappa^2)$ [Denner et al. 2014]
- Polute simulation results
- Lead to wrong solutions/analysis
Two things to remember

First thing to remember
The **absolute** need to **compute accurately** the curvature
Two things to remember

Geometry memo

1. Surface S spatially derivates to...
2. Normal vector n (eq. the tangent plane) spatially derivates to...
3. Curvature κ

Moving/Tracking/Transporting the interface

Surface S transported with (spatial) precision $O(h^M)$

\Downarrow

Curvature κ computed with (spatial) precision $O(h^{M-2})$
Two things to remember

First thing to remember
The **absolute** need to **compute accurately** the curvature

Second thing to remember
The surface (transport methods) have to be **at least 3rd order accurate** for κ to converge
Linear Volume Of Fluid (VOF-PLIC)

(a) Distance to the surface

(b) Curvature error

Figure: (non) convergence of geometric computations
Capillary rise with VOF-PLIC + CA

Remarks
- Static contact angle model: questionable
- Errors in κ ⇒ error in equilibrium pressure ⇒ error in height

Figure: Numerical results
What we propose

Model choice

- 1-fluid incompressible Navier-Stokes equations
- With Continuum Surface-Force (CSF) [Brackbill1990]

\[\sigma k n \delta S \Rightarrow \sigma k \nabla c \]

Interface/Surface

Level Set representation

- transport: 5th order accurate
- curvature: 4th order accurate based on the Closest Point method

Achievement

(at least) 3rd order accurate surface tension force computation

More details

M. Coquerelle, S. Glockner: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016
What we propose

Model choice

- 1-fluid incompressible Navier-Stokes equations
- With Continuum Surface-Force (CSF) \cite{Brackbill1990}

\[\sigma n \delta S \Rightarrow \sigma k \nabla c \]

Interface/Surface

Level Set representation

- transport: \(5^{th} \) order accurate
- curvature: \(4^{th} \) order accurate based on the Closest Point method

Achievement

(at least) \(3^{rd} \) order accurate surface tension force computation

More details

M. Coquerelle, S. Glockner: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016
Numerical results

Study case: static and translating column at equilibrium

1. No gravity ⇒ equilibrium state ⇒ null velocity field in its ref. frame
2. Numerical errors on κ ⇒ parasitic currents

(a) Static column

(b) Translating column
Application to our project

Falling drop, $64 \times 64 \times 640$, 32 comp. nodes

Cavity formation after impact, $256 \times 256 \times 128$, 64 comp. nodes
Application to our project

Falling drop on a surface, $150 \times 150 \times 75$, 32 comp. nodes

Falling drops on a surface, $400 \times 400 \times 200$, 128 comp. nodes
Conclusion

Warning...

- Numerical convergence is **mandatory** for simulation analysis
 - (most) state of the art surface tension methods **do not converge**
 - ... industrial codes as well
 - the **smaller the scale, the more severe the problem**
- **Reliability** of studies?
- No *all inclusive* solution, level set methods have drawbacks

... but don’t worry!

- Solutions (will) exist...
 - **Test your software:** easy minimal translating column test
- Still an opened research field
 - Next step: triple line models (Ph.D. starting)
Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

3 criteria

1. Accuracy against exact curvature
2. Minimal deviation along the surface
3. Minimal variation along the normal

Effects on surface dynamic:

![Diagram showing effects on surface dynamic](image)
Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

3 criteria

1. Accuracy against exact curvature
2. Minimal deviation along the surface
3. Minimal variation along the normal

Effects on surface dynamic:
Errors on curvature ⇒ wrong interface dynamic

CSF methods rely on the accurate computation of curvature

3 criteria

1. Accuracy against exact curvature
2. Minimal deviation along the surface
3. Minimal variation along the normal

Effects on surface dynamic: