An accurate numerical method for computing surface tension forces in CFD codes

Numerical experiments with surface tension

M. Coquerelle¹ S. Glockner¹

¹Numerical Fluid Mechanics (MFN), département TREFLE, laboratoire I2M Bordeaux INP & Université de Bordeaux

MicroMast, sept. 8th 2016

1

Accurate numerical method for computing surface tension

Context and motivations

- Context: ocean waves attenuation by falling rain drops
- The failling drop: a (not so) simple problem
- Simulate surface tension

2 Numerical solutions

- Be careful...
- What we propose
- Numerical results
- Applications

Context: ocean waves attenuation by falling rain drops

3

Context: ocean waves attenuation by falling rain drops

Difficulties

- Large time and spatial scales
- Sensitive, turbulent
- Measures

Needs (for simulations)

- Meso and micro numerical models
- Appropriate numerical methods
 - Accurate and efficient

Project leaders

M. Coquerelle (I2M), S. Glockner (I2M), P. Lubin (I2M), L. Mieussens (IMB), F. Véron (U. Delaware)

A (not so) simple problem

The falling of a rain drop: surface tension dominated

- What is its terminal velocity?
- What is the dynamic of the impact?

Classical numerical methods

- Fail to solve (1)
- Introduce errors in (2)

Aparté: what is the numerical convergence?

What we expect

Refine the discretization/mesh \Rightarrow Get better results

 $\textbf{Precision} \Rightarrow \textbf{Accuracy}$

Aparté: what is the numerical convergence?

What we expect

Refine the discretization/mesh \Rightarrow Get better results

 $\textbf{Precision} \Rightarrow \textbf{Accuracy}$

Example of convergence: appro	ximatio	n of π		
h 4	$h/10^{1}$ 3.3	$h/10^2 \ 3.19$	<i>h</i> /10 ³ 3.142	

Example of non convergence: approximation of π									
	h 3	$h/10^1 \\ 3.2$	<i>h</i> /10 ² 3.48	h/10 ³ 4.217					

Aparté: what is the numerical convergence?

Figure: The equilibrium of a flat surface, parasitic currents $Order \ 1: \ h/2 \rightarrow error/2$

Modeling surface tension

A boundary condition between 2 fluids

Young-Laplace law:

$$\Delta p = \sigma \kappa$$

 $\kappa = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)/2$, the mean curvature, is **purely geometric**

The (1-fluid) incompressible Navier-Stokes equations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla \mathbf{p} + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) + \mathbf{f} + \underline{\sigma\kappa \mathbf{n}\delta}$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{and} \quad \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = 0$$

7

Computing the surface tension forces

Diving into details

As $R \to 0, \kappa \to \infty$ Also as $h \to 0, \kappa \to \infty$

$$\kappa \to \infty \Rightarrow \Delta p \to \infty$$

Barriers

- High gradients/discontinuities
 - Tough for numerical methods
 - Errors in computing $\kappa \Rightarrow$ errors in the simulation

Computing the surface tension forces

Diving into details

As $R \to 0, \kappa \to \infty$ Also as $h \to 0, \kappa \to \infty$

 $\kappa \to \infty \Rightarrow \Delta p \to \infty$

In fact, when surface tension is important...

- Big errors in $\kappa \Rightarrow$ severe errors in the simulation
 - (numerical) parasitic/spurious currents are O(κ²) [DENNER ET AL. 2014]
- Polute simulation results
- Lead to wrong solutions/analysis

Two things to remember

First thing to remember

The absolute need to compute accurately the curvature

Two things to remember

Geometry memo

- Surface S spatially derivates to...
- Ormal vector n (eq. the tangent plane) spatially derivates to...
- Ourvature κ

Moving/Tracking/Transporting the interface

Surface S transported with (spatial) precision $O(h^M)$

↓

Curvature κ computed with (spatial) precision $O(h^{M-2})$

Two things to remember

First thing to remember

The absolute need to compute accurately the curvature

Second thing to remember

The surface (transport methods) have to be at least 3^{rd} order accurate for κ to converge

Linear Volume Of Fluid (VOF-PLIC)

Figure: (non) convergence of geometric computations

10

Capillary rise with VOF-PLIC + CA

Figure: Numerical results

What we propose

Model choice

- 1-fluid incompressible Navier-Stokes equations
- With Continuum Surface-Force (CSF) [BRACKBILL1990]

 $\sigma\kappa\mathbf{n}\delta_{S} \Rightarrow \sigma\kappa\nabla c$

Interface/Surface

Level Set representation

- transport: 5th order accurate
- curvature: 4th order accurate based on the Closest Point method

Achievement

(at least) 3rd order accurate surface tension force computation

More details

M. COQUERELLE, S. GLOCKNER: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016

What we propose

Model choice

- 1-fluid incompressible Navier-Stokes equations
- With Continuum Surface-Force (CSF) [BRACKBILL1990]

 $\sigma \kappa n \delta_S \Rightarrow \sigma \kappa \nabla c$

Interface/Surface

Level Set representation

- transport: 5th order accurate
- curvature: 4th order accurate based on the Closest Point method

Achievement

(at least) 3rd order accurate surface tension force computation

More details

M. COQUERELLE, S. GLOCKNER: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016

Numerical results

Study case: static and translating column at equilibrium

- **()** No gravity \Rightarrow equilibrium state \Rightarrow null velocity field in its ref. frame
- **2** Numerical errors on $\kappa \Rightarrow$ parasitic currents

Application to our project

Cavity formation after impact, 256 x 256 x 128, 64 comp. nodes

Falling drop, 64 × 64 × 640, 32 comp. nodes

Application to our project

Falling drop on a surface, $150 \times 150 \times 75$, 32 comp. nodes

Falling drops on a surface, $400 \times 400 \times 200$, 128 comp. nodes

Conclusion

Warning...

- Numerical convergence is mandatory for simulation analysis
 - (most) state of the art surface tension methods do not converge
 - ... industrial codes as well
 - the smaller the scale, the more severe the problem
- Reliability of studies?
- No all inclusive solution, level set methods have drawbacks

... but don't worry!

- Solutions (will) exist...
 - Test your software: easy minimal translating column test
- Still an opened research field
 - Next step: triple line models (Ph.D. starting)

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

3 criteria Accuracy against exact curvature Minimal deviation along the surface Minimal variation along the normal

Effects on surface dynamic :

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

Effects on surface dynamic :

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

Effects on surface dynamic :

