Accurate numerical surface tension computation for the simulation of diphasic flows...

 \ldots and application to the study of rain drops impact

M. Coquerelle¹ S. Glockner¹ F. Desmons¹

¹Numerical Fluid Mechanics (MFN), département TREFLE, laboratoire I2M Bordeaux INP & Université de Bordeaux

CEFIPRA, Bordeaux, sept. 13th 2017

Accurate numerical method for computing surface tension

Context and motivations

- Context: ocean waves attenuation by falling rain drops
- The falling rain drop: a (not so) simple problem
- Difficulties with surface tension dominant simulations

2 Numerical methods and simulations

- Modelling and computing surface tension force
- What we propose
- An accurate numerical method for curvature computation
- Numerical validation
- Application to rain drop impact

3 Conclusion

CONTEXT AND MOTIVATIONS

Context: ocean waves attenuation by falling rain drops

4

Context: ocean waves attenuation by falling rain drops

Difficulties

- Large time and spatial scales
- Sensitive (many different behaviours), turbulent
- Measures

Needs (for simulations)

- Macro and meso numerical models
- Appropriate numerical methods for micro scales simulations
 - Accurate and efficient

Project leaders

M. Coquerelle (I2M), S. Glockner (I2M), P. Lubin (I2M), L. Mieussens (IMB), F. Véron (U. Delaware)

A (not so) simple problem

The falling of a rain drop: surface tension dominated

- What is its terminal velocity?
- What is the dynamic of the impact?

C Jackson Carson

CM.-C. Guérout

Classical numerical methods

- Fail to solve $(1) \Rightarrow$ challenging problem
- Introduce errors in (2) \Rightarrow incorrect dynamics

Numerical convergence, surface tension and fluid dynamics

What we expect

Refine the discretization/mesh \Rightarrow Get better results

 $\textbf{Precision} \Rightarrow \textbf{Accuracy}$

Numerical convergence, surface tension and fluid dynamics

The equilibrium of a flat surface problem: **parasitic currents** (numerical) As $h \rightarrow 0 \Rightarrow error \rightarrow 0$ Order 1: as $h/2 \rightarrow error/2$

Numerical convergence, surface tension and fluid dynamics

Why is it *touchy*?

Smallest wave captured: $\lambda_{min} = 2h$

Fastest capillary wave velocity: $v_{\sigma} = O(\lambda_{min}^{-1/2}) \Rightarrow \Delta t_{CFL} = O(h^{3/2})$

Ex:
$$h = 10^{-4} m \Rightarrow v_{\lambda_{min}} \simeq 1.5 \, m.s^{-1} \Rightarrow \Delta t_{CFL} < 6 \cdot 10^{-5} s$$

Why is it *touchy*? (cont.)

More complex dynamics expected:

- Waves interactions
- Small scale topological changes (bubbles, drops)
- Low energy (eventually damped at macro scale)... but numericaly sensitive

7

NUMERICAL METHODS AND SIMULATIONS

Modelling surface tension

A boundary condition between 2 fluids

Young-Laplace law:

$$[p] = \sigma k$$

$$\kappa = \left(rac{1}{R_1} + rac{1}{R_2}
ight)/2$$
, the mean curvature, is **purely geometric**

Ourface force

 $\mathbf{F}_s = \sigma \mathbf{n} \kappa$

Numerical convergence and the surface tension force

Diving into details

As $R \to 0$, $\kappa \to \infty$ Also as $h \to 0$, $\lambda_{min} \to 0$ And $\lambda_{min} \to 0 \iff \kappa_{max} \to \infty$ $\kappa \to \infty \Rightarrow [p] \to \infty$

Barriers

- High gradients/discontinuities
 - Tough for numerical methods
- Errors in computing $\kappa \Rightarrow$ errors in the simulation

Numerical convergence and the surface tension force

Diving into details

As $R \to 0$, $\kappa \to \infty$ Also as $h \to 0$, $\lambda_{min} \to 0$ And $\lambda_{min} \to 0 \iff \kappa_{max} \to \infty$ $\kappa \to \infty \Rightarrow [p] \to \infty$

In fact, when surface tension is important...

- Big errors in $\kappa \Rightarrow$ severe errors in the simulation
 - (numerical) parasitic/spurious currents are O(κ²) [DENNER ET AL. 2014]
- Polutes simulation results
- Leads to wrong solutions/analysis

First thing to remember

The problem is essentially geometry related (whatever the fluid dynamic model)

Second thing to remember

The absolute need to compute accurately the curvature

Geometry memo

- Surface S spatially derivates to...
 - Normal vector n (eq. the tangent plane) spatially derivates to...
 - **Q** Curvature κ

Moving/Tracking/Transporting the interface

Surface S transported with (spatial) precision $O(h^M)$

₩

Curvature κ computed with (spatial) precision $O(h^{M-2})$

Third thing to remember

The surface (transport methods) have to be at least 3^{rd} order accurate for κ to converge

First thing to remember

The problem is essentially geometry related (whatever the fluid dynamic model)

Second thing to remember

The absolute need to compute accurately the curvature

Third thing to remember

The surface (transport methods) have to be at least 3^{rd} order accurate for κ to converge

"Traditional" Volume Of Fluid (VOF-PLIC)

Curvature error (as in [CUMMINS2005] continued)

(non) convergence of geometric computations

First thing to remember

The problem is essentially geometry related (whatever the fluid dynamic model)

Second thing to remember

The absolute need to compute accurately the curvature

Third thing to remember

The surface (transport methods) have to be at least 3^{rd} order accurate for κ to converge

First thing to remember

The problem is essentially geometry related (whatever the fluid dynamic model)

Second thing to remember

The absolute need to compute accurately the curvature

Third thing to remember

The surface (transport methods) have to be at least 3^{rd} order accurate for κ to converge

The incompressible Navier-Stokes equations (1-fluid method)

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla \mathbf{p} + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) + \mathbf{f} + \underline{\sigma\kappa n\delta_S}$$

$$\nabla \cdot \mathbf{u} = 0$$
 and $\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = 0$

What we propose

Model choice

• Within Continuum Surface-Force (CSF) [BRACKBILL1990]

 $\sigma\kappa n \delta_S \Rightarrow \sigma\kappa \nabla c$

An accurate curvature extension	
 Level Set representation transport: 5th order accurate (WENO5+RK) 	

Achievement

(at least) 3rd order accurate surface tension force computation

More details

M. COQUERELLE, S. GLOCKNER: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016

What we propose

Model choice

• Within Continuum Surface-Force (CSF) [BRACKBILL1990]

 $\sigma \kappa \mathbf{n} \delta_S \Rightarrow \sigma \kappa \nabla c$

Proposed method

An accurate curvature extension

Interface/Surface

Level Set representation

• transport: 5th order accurate (WENO5+RK)

Achievement

(at least) 3rd order accurate surface tension force computation

More details

 $\rm M.$ $\rm CoqUERELLE,~S.$ GLOCKNER: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. JCP 2016

An accurate numerical method for curvature computation

Principal difficulty

The curvature is needed around the surface...

... but it is only defined on the surface

Curvature around the surface

An accurate numerical method for curvature computation

Proposed solution

 $\begin{array}{l} \mbox{Curvature extension along }n \Rightarrow \mbox{minimal variation along }n \\ \Rightarrow \mbox{Use and extend the } \textit{Closest Point method} \end{array}$

Closest Point principle

Curvature field without (left) and with (right) the extension

An accurate numerical method for curvature computation

Proposed solution

 $\begin{array}{l} \mbox{Curvature extension along }n \Rightarrow \mbox{minimal variation along }n \\ \Rightarrow \mbox{Use and extend the } {\it Closest Point method} \end{array}$

Closest Point principle

Curvature field without (left) and with (right) the extension

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla \mathbf{p} + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) + \mathbf{f} + \underline{\sigma \kappa_{CP} \nabla c}$$

Numerical validation

Study case : static and translating drop at equilibrium

- **()** No gravity \Rightarrow equilibrium state \Rightarrow null velocity field in its ref. frame
- **2** Numerical errors on $\kappa \Rightarrow$ parasitic currents

Static column

Application to rain drop impact

Back to our original problem : the falling of a rain drop

- What is its terminal velocity $? \Rightarrow$ shape and internal currents (prelim. results)
- What is the dynamic of the impact? 2
 - 0 Wide range of parameters (We and Fr)
 - Many complex regimes/dynamics

Simulation setup (realistic rendering)

Adequate numerical methods

Numerical methods : Finite Volume based

- Navier-Stokes : 1-fluid method
 - Velocity-pressure splitting
 - Inertial term : WENO5Z-RK3
- Surface tension
 - CSF [BRACKBILL1990]
 - Curvature extension w/ Closest Point [COQUERELLE2016]
- Interface : Level Set representation
 - Transport : WENO5Z-RK3
 - Regularized $(3\Delta x)$ volume fraction
 - Reinitialization : HCR2 (second order) [HARTMANN2010]
 - Semi-implicit treatment (prediction) [COTTET2015]

Selected result : Fr=650, We=600

Falling drop, Fr=650, We=600. 8.5*M* cells, 32 comp. nodes. 8 days for 6000 iterations.

Selected result : Fr=650, We=600

Falling drop, Fr=650, We=600. 8.5*M* cells, 32 comp. nodes. 8 days for 6000 iterations.

Principle phenomena

Cavity and crown

Capillary waves

Jet and secondary drop ejection

Vortex ring(s)

Closest Point accuracy demonstration

 $t = 5.5 \, ms$

Selected result : Fr=124, We=117

Falling drop, Fr=124, We=117. 24*M* cells, 128 comp. nodes. 6 days for 7000 iterations.

Small features, big impact

Jet formation and bubble entrapment

Simulations results

Achievements

- Around 20 simulations : 10<Fr<800, 10<We<800
- Good agreement with experiments [COLE,LIOW]
 - · Cavity and multiple capillary waves
 - Thin/thick jet
 - Secondary drops and bubble entrapment
 - Simple to more complex vortex rings
- $\bullet \ \Rightarrow \text{ongoing quantitative study} \Rightarrow \text{article}$

Computational cost

- Good scalability
 - 8.5M cells \Rightarrow 7 days on 32 comp. nodes
 - 24M cells \Rightarrow 7 days on 128 comp. nodes (28 on 32 nodes)
- Worth it to use the proposed CP method
 - For relevant small features
 - Avoid fine discretization
 - 5−10% CPU cost

Going farther... terminal velocity

Falling drop Fr=1200, We=1200 8.5*M* cells, 32 comp. nodes. 6 days for 8000 iterations

Goingfarther... terminal velocity

Falling drop at terminal velocity $Fr \sim 1000, We \sim 1000$ Experiment by F. Veron (U. of Delaware)

The canopy : a tough challenge

Formation

Canopy bubble

Collapse (< 1ms)

Conclusion

Keep in mind

- Numerical convergence is mandatory for simulation analysis
 - industrial codes might not converge...
 - ...viscous damping can hide the problem.
 - \Rightarrow the translating drop test
- The smaller the scale
 - the more severe the problems
 - the more costly \Rightarrow high-order methods help!

Perspectives / challenges

- Numerical
 - Algorithm efficiency
 - Mass conservation (LS reinitialization)
- Mechanics
 - Rain drop shape and internal currents
 - Bubbles, secondary drops, thin films
 - Contact line

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

3 criteria Accuracy against exact curvature Minimal deviation along the surface Minimal variation along the normal

Effects on surface dynamic :

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

Effects on surface dynamic :

Errors on curvature \Rightarrow wrong interface dynamic

CSF methods rely on the accurate computation of curvature

Effects on surface dynamic :

