Calcul de courbure d'une surface par méthode level set pour les phénomènes de tension superficielle

M. Coquerelle¹ S. Glockner¹

¹Département TREFLE, Laboratoire I2M, Université de Bordeaux

Journée CPU, 9 septembre 2015

CPU

Le monde numérique au service de la certification et de la sécurisation des systèmes

Sommaire

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

1 Motivations et problématique

Contexte

- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Contexte : I2M/IMB - Labex CPU

Simu. num. de l'atténuation des vagues de l'océan par les gouttes de pluie

• S. Glockner (I2M), P. Lubin (I2M), L. Mieussens (IMB), F. Véron (U. of Delaware)

Verrous numériques

- Rapport d'échelle, peu de méthodes adaptées
- Calculs massivement parallèles

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Origine mécanique

Tension superficielle/de surface :

- Située à l'interface entre deux fluides non miscibles.
- Très importante aux petites échelles.

Erreurs numériques

Quadratiquement proportionnelles à la **courbure** ($\kappa = 1/R$).

Navier-Stokes incompressible

Équations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}\right) = -\nabla \mathbf{p} + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) + \mathbf{f}$$

$\nabla \cdot \mathbf{u} = 0$ et $\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = 0$

Condition aux bords entre les fluides

 $\bullet~$ Tension superficielle \sim saut de pression :

$$[p] = \sigma \kappa$$

• Modèle 1 fluide : $\mathbf{F}_{sv} = \sigma \kappa \mathbf{n}$ sur l'interface.

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (2\mu \mathbf{D}(\mathbf{u})) \\ + \sigma \kappa_{\Gamma} \delta_{\Gamma} \mathbf{n}_{\Gamma}$$

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Problématiques et cadre

Singularité de $\delta \Rightarrow NS$?

Modèle continu adapté \Rightarrow **Continuum Surface-Force (CSF)**.

 $\sigma \kappa_{\Gamma} \delta_{\Gamma} \mathbf{n}_{\Gamma} \Rightarrow \sigma \kappa \nabla c$

L'interface Г

- Transport précis :
 - Erreurs $O(h^M)$ sur $\Gamma \Rightarrow$ Erreurs $O(h^{M-2})$ sur κ .
- Choix de la représentation ? \Rightarrow Level Set ϕ

 $\bullet \ \Rightarrow \mathsf{WENO} \ \mathsf{5}$

Calcul des grandeurs : **n**, κ

- **n** : dérivées premières de $\Gamma \Rightarrow$ **n** = $\nabla \phi / |\nabla \phi|$
- κ : dérivées secondes de $\Gamma \Rightarrow \kappa_{Ls} = \nabla \cdot \mathbf{n}$.

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre

• Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Modèle CSF

Modèle de Brackbill : $\mathbf{F}_{TS} = \sigma \kappa \nabla c$

Besoin de κ autour de l'interface \Rightarrow **extension**.

Difficultés

- Calculer κ précisément (et aisément)?
 - Rappel : erreurs sur la tension superficielle quadratiques en la courbure.
- $\Theta \quad \kappa \text{ sur les points de grille} \Rightarrow késako?$

Approche proposée : extension précise de κ

- **O** Idée : κ dans le domaine = κ du point le plus proche sur Γ .
 - \bullet κ constant dans la direction normale.
- Au moins à l'ordre $2 \Rightarrow$ ordre 4 réalisé.

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Erreurs sur la courbure \Rightarrow dynamique de la surface

Une méthode CSF précise dépend du calul précis de la courbure.

Effets sur la dynamique :

Erreurs sur la courbure \Rightarrow dynamique de la surface

Une méthode CSF précise dépend du calul précis de la courbure.

Effets sur la dynamique :

Erreurs sur la courbure \Rightarrow dynamique de la surface

Une méthode CSF précise dépend du calul précis de la courbure.

Effets sur la dynamique :

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Principe de l'extension par Closest Point

Approche basée sur [Herrmann]

Courbure en un point = courbure du point le plus proche :

$$\kappa_{CP}(\mathbf{x}) = \kappa(CP(\mathbf{x}))$$

Par interpolation de $\kappa_{LS} = \nabla \cdot \mathbf{n}$

Figure : Extension par méthode de Closest Point.

Propriétés du Closest Point [Macdonald]

O Distance minimum : $CP(\mathbf{x}) = \{\mathbf{y} | d(\mathbf{y}, \Gamma) \text{ est minimum}\}$

Algorithme

Principe : descente de Newton

- **(**) ϕ indique une distance, $\nabla \phi$ une direction.
- $\ \, \textbf{O} \quad \textbf{CP}_\odot : \textbf{assure} \ \phi = \textbf{0} \ [\textbf{Herrmann}].$

Apport

 CP_{\perp} : assure la colinéarité [Coquerelle].

Convergence spatiale pour une ellipse

(a) *κLs*.

Figure : Profils de courbure.

Méthode	L∞	Dév.
		normale
κ _{LS}	1	1
CP_{\odot} [Herrmann]	2	2
CP_{\perp} [Coquerelle]	4	2
CP _{ex}	4	2

Table : Ordres de convergence.

1 Motivations et problématique

- Contexte
- La force de tension superficielle
- Problématiques et cadre
- Synthèse et direction de recherche choisie

2 Extension précise de la courbure

- Erreurs sur la courbure
- Extension de la courbure par Closest Point
- Résultats numériques avec Navier-Stokes CSF

Résultats numériques avec Navier-Stokes CSF

Cas d'étude

- Disque à l'équilibre.
- Oisque transporté à l'équilibre.
- Montée de bulle.

Applications

- O Chute d'une goutte dans l'air.
- Ochute d'une goutte sur une surface libre.
- Ohute de plusieurs gouttes sur une surface libre.

Disque à l'équilibre

Cas d'étude

- Etat d'équilibre \Rightarrow vitesse nulle : $\nabla p = \frac{1}{We} \kappa \mathbf{n} \delta_{\Gamma}$
- **2** Erreurs numériques sur $\kappa \Rightarrow$ courants parasites.

Figure : Nombre capillaire (équiv. vitesse max.).

Résultats

- Onvergence à l'ordre 4.
- P/r à la littérature : Ca est 10 à 100 inférieur (maillage grossier).

Disque transporté

Cas d'étude

- Idem avec vitesse de translation fixe.
- 2 Erreurs de transport sur ϕ plus importantes.

Figure : Nombre capillaire.

Résultats

Convergence à l'ordre 4 (VOF-PLIC : à peine ordre 1 [Popinet]).

Applications dans le cadre du projet

Chute d'une goutte, profil de vitesse.

64×64×640, 32 coeurs.

Cavité formée après l'impact. 256×256×128, 64 coeurs.

Applications

Chute d'une goutte sur une surface. 150×150×75, 32 coeurs.

Chute de gouttes sur une surface. 400×400×200, 128 coeurs.

Conclusion

À retenir

- Précision dépendant de :
 - Transport de Γ.
 - Θ Calcul de $CP(\mathbf{x})$: seuils, interpolation.
- O Navier-Stokes :
 - Ordre 2 en espace...
 - ❷ Mais utile d'avoir un ordre > 2 pour la force de tension superficielle !
- Parallélisation réalisée : grands domaines, petits pas de temps.

M. Coquerelle, S. Glockner

A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces.

Corrections soumises à JCP.

Perspectives

- Calcul + précis et efficace du CP.
- **2** Réinitialisation de LS : $\phi = \pm |\overrightarrow{\mathbf{x} CP(\mathbf{x})}|$.
- Contrainte sur le pas de temps due à la tension superficielle.

Intégration dans le projet Open Source Notus

Code de calcul Notus

- Ordre 2 (a minima) partout :
 - Navier-Stokes,
 - $\textbf{0} \quad \text{Interactions fluide-structure} \Rightarrow \text{post-doc} \ \textbf{CPU} \ \text{J}. \ \text{Picot},$
 - $\textbf{O} \quad \text{Transport d'interfaces} \Rightarrow \text{post-doc } \textbf{CPU} \text{ A. Lemoine,}$
 - Tension superficielle⇒ post-doc CPU M. Coquerelle.
- Massivement parallèle.
- Validation rigoureuse.

Frontières immergées - Post-doc CPU - J. Picot

Projet inter Labex : Micro-climat dans les grottes ornées

- D. Lacanette, T. Milcent, S. Glockner
 - Obstacles de formes quelconques dans un maillage cartésien.
 - **2** Résoudre $\Delta u = f$ avec des CL Dirichlet ou Neumann

Réalisations

- Maillage non uniforme.
- Ordre 2 ([Mittal,Coco]).
- Stencil compact.

En cours

- Finalisation pour Navier-Stokes.
- Article JCP en préparation.

Transport d'interface - Post-doc CPU - A. Lemoine

Collab. CELIA : Méthode Moment-Of-Fluid (MOF)

- J. Breil, S. Glockner
 - Similaire à VOF-PLIC + centre de masse. Phases multiples (> 3).
 - e Reconstruction à l'ordre 2, maillage quelconque.

Réalisations

- Implémentation et validation 2D.
- **②** Formule analytique pour le reconstruction.

Test du vortex. 5 phases. 128×128 .

En cours

- Implémentation 3D.
- 2 Article JCP en préparation.
- $\Theta \Rightarrow$ Couplage avec Level-Set (MOF-LS) + *CP* pour tensions superficielles.