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a b s t r a c t

The motivation of this work is to carry out parallel simulations of incompressible flows on block-struc-
tured meshes. A new partitioning method is proposed. The quality of rectangular partitions is checked
and compared with other methods, as regards load balance, edge-cut and block numbers. The partitioner
is coupled with the massively parallel Hypre solver library and efficiency of the coupling is measured.
Finally, the code is applied to study laminar flows (steady and unsteady) on three non-rectangular
geometries. Very fine grids are used to compute reference solutions of a Z-shaped channel flow and
the L-shaped and double lid driven cavities.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Flow simulations on complex geometries require either block-
structured or unstructured grids. The latter allow very complex
geometries to be meshed leading to complex discretization
schemes and solvers that require a table of connectivity between
nodes and indirect addressing. If the geometry is not too compli-
cated, it can be divided into a reasonable number of structured
and conforming blocks. The volume control aspect and lexical
numbering facilitate the discretization of the equations (specially
if the grid remains orthogonal) and the use of the fastest parallel
solvers dedicated to the structured grids.

Solver performances are closely linked to the mesh partitioning
or the matrix graph. Partitioning methods can be divided into two
classes: geometric and combinatorial [1]. Geometric techniques
are based on the coordinates of the mesh nodes whereas combina-
torial partitioning uses the graph or the hypergraph of the mesh.
Geometric techniques produce lower quality partitions than com-
binatorial methods but are extremely fast. For unstructured
meshes, partitioner libraries such as CHACO [2], METIS [3], SCOTCH
[4] are available. Unfortunately, they are not well suited to the
block-structured framework since they produce unstructured par-
titions, as shown in Fig. 1. For block-structured meshes, few works
have been carried out. The two main strategies used for the parti-
tioning of such meshes are the recursive edge bisection [5] and the
so-called greedy algorithm [6]. These geometric techniques are

used in elsA software [7] which is devoted to compressible flows
around complex geometries. We can also cite the works of Rant-
akokko [8] who proposes a framework for partitioning composite
grids. In our opinion, his more interesting approach consists in a
graph strategy applied at the block level instead of the node level
(block refinement is also proposed).

Our goal consists in providing a partitioning strategy for block-
structured geometries which produces rectangular partitions. It
can be classified as a geometric method even if the coordinates
of the nodes are not used. The partitioner is coupled with the mas-
sively parallel solver and preconditioner Hypre library [9], more
precisely with the semicoarsening geometric multigrid solver
[10,11]. Firstly, we are going to present the different steps upon
which the proposed method relies. Then, we will compare the
quality of the partitions with other approaches and analyse the
performance of the coupling with Hypre solvers. Lastly, we will ap-
ply our code to compute incompressible flows on non-rectangular
geometries that have been scarcely studied so far.

2. Partitioning strategy

Firstly, let us recall the two main qualities of a partitioner:

� It must respect load balancing between processors: each pro-
cessor should have nearly the same amount of work to do to
minimize idle processors. In our context, each processor
should have around the same number of nodes, close to
the ideal load which is equal to the number of nodes divided
by the number of processors.
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� It must minimize explicit communication between proces-
sors, i.e. the surface-to-volume ratio or edge-cuts. The goal
is to delay as far as possible the moment when communica-
tions between processors increase such that efficiency col-
lapses as the number of processors rises.

The conceptual interface [12] of Hypre is quite complete and
supports four options: structured grid, block-structured grid, finite

element interface, and linear algebraic interface. The fastest solvers
such as geometric multigrid ones are available for structured grids,
and block-structured grids, which is our framework. The interface
requires global indexing of the nodes and rectangular boxes that
can be non-contiguous. In the next sections, we will present the
main steps of the partitioner and finally a complete algorithm that
can be used in another solver framework.

Fig. 1. Partitioning provided by METIS.

Geometry First decomposition Second decomposition Third decomposition

Fig. 2. Example of geometries.

3 blocks

4 blocks

7 elementary blocks

10 elementary blocks

Original mesh Elementary block splitting

Fig. 3. Elementary block splitting.
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2.1. An elementary block decomposition

In our opinion, the partitioner should be independent of the ini-
tial block construction. For instance, two geometries are defined on
the left part of Fig. 2. On the right part, different ways to decom-
pose them, into three or four blocks are presented (that can be later
meshed). Meshes are not shown but they are continuous through
the interfaces between blocks. In the proposed method, the same
partition will be produced for any geometry decomposition. This
approach avoids having to consider parallelism during the con-
struction phase of the mesh.

Consequently, the first step consists of splitting the main blocks
into elementary ones. This is done by lengthening each boundary
line. Intersections between lines define corners of new elementary
blocks. For instance in Fig. 3, three blocks of the first geometry are
split into seven elementary ones, whereas the four blocks of the
second geometry are divided into 10 elementary ones. At this
point, we can make three remarks:

� These elementary blocks are now the starting point of our
partitioner.
� There is no reason for these blocks to be balanced.

� These blocks could have been created during the construction
phase of the mesh, but it can become really fastidious for a large
number of blocks.

2.2. Block merging

The second step of the partitioner consists in merging the ele-
mentary blocks into macro-blocks. In Fig. 4, we have merged 10
elementary blocks into four macro-blocks. The first macro-block
is the largest of all possible macro-blocks. Then with the remaining
elementary blocks, we choose the largest remaining macro-block
and so on until there is no more elementary blocks. The idea of
generating macro-blocks as big as possible is to minimize the num-
ber of blocks (and consequently to maximize their size) for which
we are able to construct simple and optimal partitioning. Each
macro-block is split into three zones (see Fig. 5). The main zone
is zone 1 while zones 2 and 3 are residual zones.

2.2.1. Main zone
The size of the main zone is chosen such that it is a multiple of

the ideal load. Then, straightforward partitioning that minimizes
edge-cuts and respects load balancing is applied.

The number of cells in each direction of space is taken as an in-
put by the partitioning (Nx = number of cells in the x direction,
Ny = number of cells in the y direction). It can produce square or
rectangular partitions. We also consider a special case if the
number of processor associated to the zone 1 is a prime number
(see Fig. 6).

2.2.2. Residual zones
Residual zones 2 and 3 of two different macro-blocks are asso-

ciated to one processor so that the sum of their size is equal to the
ideal load. Thus, load balancing is ensured (see Fig. 5).

We can note in Fig. 4 that very small macro-blocks (the darker
one) can be composed just of one zone 2 or the sum of zones 2 and

Fig. 4. Merging of elementary block into rectangular macro-blocks.

2 2 312 11

3 2Size (A  + B  ) = Ideal load

2 1 3

Macro−block A Macro−block B

Fig. 5. Residual zones.

xN  = N y xN  << N y Prime number

Fig. 6. Partitioning for the main zone.
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3. These zones can create some non-contiguous regions on the
same processor.

2.3. Node partitioning

If we had used cell partitioning, further caution would not have
been necessary. With node partitioning, however, care has to be ta-
ken to the boundaries between blocks that can lead to non-rectan-
gular macro-blocks. Indeed, as shown in Fig. 7, there exist two
configurations that produce a broken boundary line. The only solu-
tion is to split the blocks in two parts. These configurations are
quite rare in the cases we have studied.

From this set of geometric considerations, an Algorithm 1 has
been extracted that can be applied to any 2D block-structured grid.

Algorithm 1. Partitioning strategy

1: Elementary block splitting
2: for Each elementary block do
3: Create the list of all possible rectangular macro-blocks

associated to the elementary block
4: end for
5: while Macro-block partitioning not finished do
6: Choose the biggest remaining macro-block
7: if Configuration 1 then
8: Reject the macro-block from the list
9: else if Configuration 2 then
10: Cut the block and update macro-block list
11: else
12: Accept the macro-block and update macro-block list

13: end if
14: end while
15: for Each macro-block do
16: Construction of the main zone and residual zones
17: Partitioning of the main zone
18: end for
19: return

3. Block-structured partitioner quality and performance

3.1. Load balancing and edge-cuts

In this section, we test the quality of the partitioner concerning
the load balancing, the number of edge-cuts, the number of blocks
and the time consumed by the partitioning in comparison with
those using METIS, the recursive edge bisection (REB) and the gree-
dy algorithm (GA). For the two latters, results have been obtained
with elsA software [7]. Several examples are considered.

The first example is the double cavity geometry, composed of
three blocks, four elementary blocks and 4 � 105 nodes. Fig. 8
represents the partitions for 16 and 64 processors (one colour
per processor). Table 1 compares load imbalance, edge-cut and
block numbers between the different approaches.

The second example concerns a Z-shaped canal with three
blocks, five elementary blocks and 5 � 105 nodes. Again, Fig. 9 rep-
resents the partition for 64 processors whereas Table 2 compares
performances.

Broken line −> Split the block

Configuration 1 Configuration 2 

Fig. 7. Block merging rules.

Fig. 8. Partitioning of a double cavity mesh.

Table 1
Partitioner performance for the double cavity mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.54 0.44 1.40 2.87
Load imbalance METIS (%) 1.54 2.28 3.17 3.28
Load imbalance REB (%) 17.07 17.07 17.08 17.08
Load imbalance GA 0.001 (%) 0.08 0.08 0.09 0.09
Load imbalance GA 0.05 (%) 0.97 4.49 5 4.85

Edge-cuts present 2829 4584 7513 11,360
Edge-cuts METIS 3230 4853 7507 11,176
Edge-cuts REB 2300 3800 6000 9000
Edge-cuts GA 0.001 3183 5042 7706 13,259
Edge-cuts GA 0.05 3077 4636 7303 12,961

Number of blocks present 11 19 35 66
Number of blocks METIS 8 16 32 64
Number of blocks REB 8 16 32 64
Number of blocks GA 0.001 21 49 87 171
Number of blocks GA 0.05 14 22 41 94

E. Ahusborde, S. Glockner / Computers & Fluids 43 (2011) 2–13 5



The third and last example is a ring with 10 blocks, 27 elemen-
tary blocks and 1.5 � 105 nodes. Again, Fig. 10 represents the par-
tition for 64 processors while Table 3 compares performances.

These test cases underline very good load imbalance lower than
1% if the number of processors is not too high. It confirms that
splitting macro-blocks into three zones is efficient, residual zones
being associated to verify ideal load. Lower load imbalance cannot
be reached because the precision of the partitioner is equal to the

length of a mesh line (necessary to keep rectangular partitions). If
the number of processors increases, load imbalance increases but
remains lower than 3%. Here, the partitioning effect of zone 1 is
more visible: the size of a line of the mesh is relatively high in
comparison with the size of the partition. The number of edge-cuts
is overall very good, better than with METIS. REB method shows
optimal results as regards edge-cut and block numbers but very
high load imbalance (up to 47%) which is a crippling default. More-
over, this method did not provide acceptable results for the ring
mesh probably because of the circular aspect of the geometry. Load
imbalance produced by the GA is controlled by an epsilon param-
eter which has a consequence on the number of blocks generated:
the lower is � the lower is the load imbalance, but the greater is the
number of blocks. Two values for � have been used: 0.05 and 0.001.
For � = 0.001 load imbalance is very low, edge-cut number is
acceptable but the number of blocks is more than the double of
the number of processors. That leads to a high number of non-con-
tiguous subdomains associated to a processor: it can reduce solver
efficiency and it increases the memory requirement due to the
multiplication of ghost cells necessary to the communications be-
tween processors [7]. For � = 0.05, load imbalance is higher than
our method, as well as edge-cut and block numbers. Finally for
the ring example, CPU time shows that the proposed block-ap-
proach is much faster (nearly 30 times) than the other methods.
This point could be even more relevant for 3D partitioning where
CPU time is much longer. We can conclude that the proposed

Fig. 9. Partitioning of a Z-shaped canal mesh.

Table 2
Partitioner performance for the Z-shaped canal mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.42 0.40 0.91 1.37
Load imbalance METIS (%) 1.66 3.07 3.24 3.15
Load imbalance REB (%) 47.63 47.63 47.63 47.64
Load imbalance GA 0.001 (%) 0.08 0.09 0.08 0.1
Load imbalance GA 0.05 (%) 1.45 4.14 4.77 4.93

Edge-cuts present 2016 3692 6351 10,949
Edge-cuts METIS 2247 4055 7096 11,700
Edge-cuts REB 1773 3140 5640 8843
Edge-cuts GA 0.001 2521 4345 7625 14,317
Edge-cuts GA 0.05 2335 3864 7219 13,756

Number of blocks present 10 18 34 66
Number of blocks METIS 8 16 32 64
Number of blocks REB 8 16 32 64
Number of blocks GA 0.001 21 50 80 164
Number of blocks GA 0.05 12 20 49 91

Fig. 10. Partitioning of a ring mesh.

Table 3
Partitioner performance for the ring mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.10 0.15 0.35 0.86
Load imbalance METIS (%) 0.43 1.17 2.39 2.92
Load imbalance REB (%) – – – –
Load imbalance GA 0.001 (%) 0.08 0.05 0.08 0.05
Load imbalance GA 0.05 (%) 0.56 1.19 2.46 4.99

Edge-cuts present 2254 4346 7884 14,439
Edge-cuts METIS 2240 4746 10,113 16,482
Edge-cuts REB – – – –
Edge-cuts GA 0.001 12,730 14,052 15,805 19,524
Edge-cuts GA 0.05 12,504 13,409 14,800 18,342

Number of blocks present 17 25 41 73
Number of blocks METIS 8 16 32 64
Number of blocks REB – – – –
Number of blocks GA 0.001 50 68 109 180
Number of blocks GA 0.05 42 48 60 92

CPU present time (s) 0.04 0.048 0.048 0.048
CPU time METIS (s) 1.24 1.23 1.29 1.32
CPU time REB (s) – – – –
CPU time GA 0.001 (s) 1.63 1.64 1.65 1.67
CPU time GA 0.05 (s) 1.63 1.64 1.63 1.65
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method is efficient for the studied geometries and shows a good
compromise between all the partitioning requirements.

3.2. Scalability

The efficiency of coupling the partitioner and the Hypre library
is illustrated solving the Poisson equation obtained from one
velocity correction step [13] which is very CPU time consuming
in a Navier–Stokes solver. The studied problem is the double lid
driven cavity flow.

The solver is a Generalized Minimal Residual Method (GMRES)
associated to the geometric semicoarsening multigrid precondi-
tioner. The relative residual is set to 10�10. The code runs on an
SGI ICE cluster. Two types of processors have been used:
Harpertown nodes linked to a DDR Infiniband network and Neha-
lem nodes linked to a QDR Infiniband network.

In parallel computing, two types of scalability are defined. The
first is the strong scaling, which represents the relation between
the computation time and the number of processors for a fixed to-
tal problem size. The second is the weak scaling, for which the load
per processor is constant.

3.2.1. Weak scaling
Fig. 11 displays for each type of processor (Harpertown and

Nehalem) CPU time as a function of the number of processors, with
32,500 and 65,000 degrees of freedom (dof) per processor. We can
see that processors Nehalem are much faster than Harpertown
ones, particularly if the number of processors is low. A time ratio
from 1.3 to 2.1 can be observed.

Weak efficiency is given by:

WE ðNÞ ¼ CPU time on p processors
CPU time on N processors

where p denotes the number of processors used for the reference
time (not always equal to one for heavy computations). Efficiency
equal to one indicates an optimal behaviour for the algorithm and
the computer architecture. Indeed, CPU times remains constant,
equal to the reference time, while the total size of the problem in-
creases with the number of processors. Usually, this property is
hardly verified and curves with plateaus can be observed. Values
of the plateaus rise toward one with the load of each processor. This
phenomenon is illustrated in Fig. 12. Weak efficiency is better for
the Harpertown cluster than the Nehalem one, besides a longer
computation time.

3.2.2. Strong scaling
Fig. 13 displays for each type of processor (Harpertown and

Nehalem) on a logarithmic scale, CPU time as a function of the
number of processors for two fixed size problems of 1 and 16 mil-
lion degrees of freedom. Again, processors Nehalem are much fas-
ter than Harpertown ones.

Strong efficiency is given by:

SE ðNÞ ¼ CPU time on p processors� p
CPU time on N processors� N
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Fig. 12. Weak scaling versus the number of processors.

10 100 1000

Number of processors

0.1

1

10

C
PU

 ti
m

e 
(s

)

Harpertown 16M dof
Nehalem 16M dof
Harpertown 1M dof
Nehalem 1M dof

Fig. 13. CPU time versus the number of processors.

10 100 1000

Number of processors

0.4

0.6

0.8

1

1.2

1.4

1.6

St
ro

ng
 e

ff
ic

ie
nc

y

Harpertown 16M dof
Nehalem 16M dof
Harpertown 1M dof
Nehalem 1M dof

Fig. 14. Strong scaling versus the number of processors.

0 64 128 192 256 512
Number of processors

0

0.5

1

1.5

2

R
at

io

Ratio 65000 dof 
Ratio 32500 dof

0

0.5

1

1.5

2

C
PU

 ti
m

e 
(s

)

Nehalem 32500 dof
Harpertown 32500 dof
Nehalem 65000 dof
Harpertown 65000 dof

384 448320

Fig. 11. CPU time versus the number of processors.

E. Ahusborde, S. Glockner / Computers & Fluids 43 (2011) 2–13 7



where p denotes the number of processors used for the reference
time (not always equal to one for heavy computations). It points
out an optimal use of the parallel resources. Efficiency equal to
one indicates that communications and synchronizations between
processors are negligible.

Fig. 14 represents the strong scaling versus the number of pro-
cessors on a semi-logarithmic scale. With the Harpertown archi-
tecture and 16 million dof, a very high efficiency greater than 0.8
for up to 1024 processors can be observed (16,000 dof per proces-
sor). The first part of the graph being over the expected efficiency is
due to memory bandwidth saturation when the number of proces-
sors is low that leads to a long reference time in the strong effi-
ciency formula. Using more processors leads to smaller tasks that
lead to a performance increase when more and more data can be
kept in cache. With 1 million dof, this effect is less visible ans scal-
ing is very good up to 128 processors (8000 dof per processor).
With the Nehalem architecture which has a much higher memory
bandwidth (more than three times), efficiency curves have the ex-
pected behaviour. Consequently, optimal efficiencies are obtained
for 512 and 32 processors respectively for the 16 and 1 million
dof problems. The saturation of the efficiency due to the increase
of the communications between processors appears earlier with
this architecture.

The next part of the article is devoted to the study of incom-
pressible flows in non-rectangular geometries using the approach
proposed here.

4. Computations of incompressible flows on non-rectangular
geometries

Laminar flows in rectangular geometries, such as the lid driven
cavity [15,16], have been extensively studied in the literature.
Several numerical methods have been compared and reference
solutions are available for a wide range of Reynolds numbers
(leading to stationary or unsteady flows). In the present study,
we propose a precise solution of flows for three non-rectangular
geometries, scarcely studied so far.

Time discretization of the Navier–Stokes equations is implicit
thanks to Gear’s second order backward differentiation formula
[14]. A pressure correction method (see Goda [13]) is used to solve
the velocity–pressure coupling. Spatial discretization (second or-
der centered scheme) is based on the finite volume method on a
staggered grid of the Marker and Cells type. Solvers of the Hypre
library are used.

4.1. Z-shaped channel

Flow in a Z-shaped channel has been studied in [17,18]. The chan-
nel has an abrupt expansion and contraction of it section (with a ra-
tio of two), associated with a change of direction (horizontal
contracted sections and a vertical expanded one). In our study, the
Reynolds number Re is based on the width of the channel and the
mean value of the inlet velocity. We can note that in [17], the Rey-
nolds number is defined from the mean velocity umean while in
[18], it is defined from the maximal velocity umax = 1.5umean. A
Poiseuille velocity profile is imposed at the inlet while Neumann
and wall conditions are respectively imposed at the outlet, upper
and lower sides. We have studied the flow for Re = 200. The stream-
lines and the points P i(xi, yi) of detachment and reattachment of the
flow are presented in Fig. 15. Three main recirculations are created.
The first and biggest one occupies almost one-half of the expanded
region. The second eddy is developed in the upper right-hand corner
while the third one is attached to the upper boundary at the begin-
ning of the last contracted horizontal section. An infinite series of
Moffat corner vortices [19] of increasingly smaller amplitude ap-
pears in the lower left and the upper right corners (see zooms in
Fig. 15). Four increasingly fine grids with 3.75 � 103, 1.5 � 105,
6 � 105, 2.4 � 106 nodes were used.

4.1.1. Velocity profiles
In Fig. 16, we compare our velocity profiles at different sections

with those obtained in [17]. We can note good accordance in the
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Fig. 15. Streamlines for the Z-shaped flow.
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results except for the section x = 9 where the Poiseuille flow is re-
stored more quickly for [17]. The very coarse grid (7000 nodes)
used in [17] could explain this difference. There are no other data
in the literature to compare with. We thus present our values of
positions and intensities of the vortices.

4.1.2. Positions and intensities of the vortices
Table 4 represents the positions and intensities of the three pri-

mary vortices versus the mesh size for Re = 200. Positions and
intensities of the secondary and ternary vortices are presented in
Table 5. Only mesh 4 is fine enough to capture the ternary vortex.
Finally, Table 6 reports the positions of the detachment and reat-
tachment points P i(i = 1,10) defined in Fig. 15. Convergence is
achieved of two to four significant digits.

4.2. L-shaped driven cavity

Flow in an L-shaped driven cavity has been studied in
[17,18,20]. The fluid is driven by the upper side while the other
boundaries are walls. The configuration and the streamlines are
presented in Fig. 17 for a Reynolds number Re = 1000 (based on
the cavity width and the lid velocity). The presence of a step inside
the cavity induces three recirculation zones, two in the upper part
of the cavity and one in the lower. The main recirculation is located
in the upper right part. Secondary vortices, whose size increases
with increasing Re, appear in the corners of the cavity. If the grid
is fine enough, ternary vortices can be computed. The study is car-
ried out for Re = 1000. Four increasingly fine grids with 1.25 � 105,
5 � 105, 2 � 106 and 8 � 106 nodes were used.

(0.5,0.5)

(0.5,0) (1,0)
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(0,0.5)

1
u  = 1, u  = 0 

2

Fig. 17. Streamlines for the L-shaped driven cavity.
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Table 4
Positions (x, y) and intensities of the primary vortices.

Reference Main primary vortex (x, y) Vorticity

Mesh 1 (2.8097, 0.83996) �1.29348
Mesh 2 (2.8117, 0.83881) �1.28848
Mesh 3 (2.8127, 0.83797) �1.28474
Mesh 4 (2.8133, 0.83748) �1.28253

Reference Upper primary vortex (x, y) Vorticity

Mesh 1 (3.5884, 4.9967) 0.75678
Mesh 2 (3.5861, 4.9945) 0.75393
Mesh 3 (3.5849, 4.9925) 0.75299
Mesh 4 (3.5845, 4.9914) 0.75279

Reference Lower primary vortex (x, y) Vorticity

Mesh 1 (5.3985, 0.70982) 4.4441
Mesh 2 (5.3893, 0.71240) 4.3645
Mesh 3 (5.3716, 0.71392) 4.3239
Mesh 4 (5.3684, 0.71469) 4.3054

Table 5
Positions (x, y) and intensities of the secondary vortices.

Reference Upper secondary vortex (x, y) Vorticity

Mesh 1 – –
Mesh 2 (3.9676, 5.5924) �0.00429
Mesh 3 (3.9659, 5.5907) �0.00512
Mesh 4 (3.9655, 5.5902) �0.00533

Reference Lower secondary vortex (x, y) Vorticity

Mesh 1 (2.1176, 0.10110) 0.10198
Mesh 2 (2.1188, 0.10185) 0.10283
Mesh 3 (2.1191, 0.10215) 0.10272
Mesh 4 (2.1193, 0.10219) 0.10241

Reference Lower ternary vortex (x, y) Vorticity

Mesh 4 (2.00632, 0.00632) �6.22 � 10�4

Table 6
Positions (xi, yi) of the detachment and reattachment points P i(i = 1,10).

Reference P 1(x1, y1) P 2(x2, y2)

Mesh 1 (2.4249, 5.625) (4, 4.3519)
Mesh 2 (2.3750, 5.625) (4, 4.3519)
Mesh 3 (2.3500, 5.625) (4, 4.3394)
Mesh 4 (2.3406, 5.625) (4, 4.3332)

Reference P 3(x3, y3) P 4(x4, y4)

Mesh 1 (7.6250, 1) (2, 0.20008)
Mesh 2 (7.6250, 1) (2, 0.22499)
Mesh 3 (7.6313, 1) (2, 0.23124)
Mesh 4 (7.6281, 1) (2, 0.23126)

Reference P 5(x5, y5) P 6(x6, y6)

Mesh 1 (2.2749, 0) (3.7750, 0)
Mesh 2 (2.2875, 0) (3.7749, 0)
Mesh 3 (2.3063, 0) (3.7812, 0)
Mesh 4 (2.3094, 0) (3.7812, 0)

Reference P 7(x7, y7) P 8(x8, y8)

Mesh 1 – –
Mesh 2 (3.9374, 5.625) (4, 5.5624)
Mesh 3 (3.9249, 5.625) (4, 5.5496)
Mesh 4 (3.9187, 5.625) (4, 5.5437)

Reference P 9(x9, y9) P 10(x10, y10)

Mesh 4 (2, 0.0125) (2.0125,0)
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4.2.1. Velocity profiles
In Figs. 18 and 19, the velocity profiles at x = 0.75 and y = 0.74

present good accordance with those obtained in [20,18].

4.2.2. Positions and intensities of the vortices
Tables 7 and 8 represent the positions and the intensities of the

primary and secondary vortices. Table 9 displays the positions and
the intensities of the ternary vortices that can be only computed
for meshes 3 and 4. Convergence of up to 2–4 digits is reached.

4.3. Double lid driven cavity

Flow in a double lid driven cavity has been recently studied in
[21,22]. This configuration is presented in the left upper part of
Fig. 20. The fluid is driven by the lower and upper boundaries in
opposite directions. The other boundaries are walls. The Reynolds
number Re is based on the cavity length L and the lid velocity.
We focused on two flow ranges according to the value of the Rey-
nolds number in relation to its critical value Rec:

� Re < Rec: the flow is stationary. We can note three different
regimes represented in Fig. 20. On the upper right part for
Re = 100, twin primary eddies are created between the two driv-
ing lids while secondary vortices appear in the left and right

corners. In the lower left part for Re = 1000, the two primary
vortices coalesce and two secondary vortices appear. Finally,
in the lower right part for Re = 3000, the primary eddy becomes
horizontal. The size of the two latter secondary vortices
increases and two new secondary eddies appear (vertically on
the upper right and lower left parts of the domain). However,
it is now well-known [23] that cavity flows experience 3-
dimensional global instability well below Rec. Consequently,
for Re P Re3D

c 2-dimensional studies are not physical anymore
even if they can present numerical interests. Re3D

c has been
recently identified for the double and cross-sectional cavity
flows [24]. For the former, it characterizes the transition
between the two first flow regimes.
� Re P Rec: the flow becomes 2D unsteady, from periodic to cha-

otic. In [15,16], a study was carried out to identify the transition
from stable to periodic flow in the case of the 2D lid driven
square cavity flow. The flow becomes unstable via a Hopf bifur-
cation. In [16], the first Lyapunov exponent was used to com-
pute a critical Reynolds number Rec close to 8000. In [15],
thanks to a different approach (unsteady simulations with small
time step), the first Hopf bifurcation occurs for Rec = 7402. Sev-
eral subcritical and supercritical flow regimes were identified.

4.3.1. Steady flow
For the study of the steady flow, we focus on Re = 1000. The

lower left part of Fig. 20 displays the streamlines. As described
above, a primary vortex and four secondary eddies appear. With
very fine meshes, ternary vortices appear between the secondary
ones and the corner of the domain (see right part of Fig. 21). These
vortices were not shown in previous studies [21,22]. Fig. 21 repre-
sents two zooms in which we define the points P i(xi, yi) of detach-
ment and reattachment of the flow. The results found in the
literature are given on the intensities and positions of the vortices.

Table 7
Positions (x, y) and intensities of the primary vortices.

Reference Upper right primary vortex (x, y) Vorticity

Oosterlee [20] (0.6938,0.7509) –
Mesh 1 (0.69440, 0.75113) �3.87659
Mesh 2 (0.69408, 0.75101) �3.87413
Mesh 3 (0.69394, 0.75097) �3.87279
Mesh 4 (0.69388, 0.75094) �3.87212

Reference Upper left primary vortex (x, y) Vorticity

Oosterlee [20] (0.1822,0.7515) –
Mesh 1 (0.18417, 0.75078) 1.21124
Mesh 2 (0.18386, 0.75091) 1.20968
Mesh 3 (0.18417, 0.75095) 1.20901
Mesh 4 (0.18417, 0.75097) 1.20870

Reference Lower right primary vortex (x, y) Vorticity

Oosterlee [20] (0.6866,0.3089) –
Mesh 1 (0.68741, 0.30940) 0.96079
Mesh 2 (0.68731, 0.30923) 0.96074
Mesh 3 (0.68729, 0.30918) 0.96078
Mesh 4 (0.68728, 0.30911) 0.96081

Table 8
Positions (x, y) and intensities of the secondary vortices.

Reference Upper left secondary vortex (x, y) Vorticity

Mesh 1 (0.01430, 0.51450) �0.01112
Mesh 2 (0.01441, 0.51463) �0.01140
Mesh 3 (0.01443, 0.51466) �0.01147
Mesh 4 (0.01444, 0.51467) �0.01148

Reference Lower left secondary vortex (x, y) Vorticity

Mesh 1 (0.51804, 0.01850) �0.00780
Mesh 2 (0.51814, 0.01859) �0.00796
Mesh 3 (0.51815, 0.01861) �0.00801
Mesh 4 (0.51815, 0.01861) �0.00802

Reference Lower right secondary vortex (x, y) Vorticity

Mesh 1 (0.98356, 0.01641) �0.004610
Mesh 2 (0.98343, 0.01653) �0.004739
Mesh 3 (0.98341, 0.01656) �0.004768
Mesh 4 (0.98340, 0.01657) �0.004778

Table 9
Positions (x, y) and intensities of the ternary vortices.

Reference Upper left ternary vortex (x, y) Vorticity

Mesh 3 (6.864 � 10�4, 0.50068) 3.17 � 10�5

Mesh 4 (8.279 � 10�4, 0.50082) 7.00 � 10�5

Reference Lower left ternary vortex (x, y) Vorticity

Mesh 3 (0.99922, 7.772 � 10�4) 1.40 � 10�5

Mesh 4 (0.99902, 9.705 � 10�4) 3.21 � 10�5

Reference Lower right ternary vortex (x, y) Vorticity

Mesh 3 (0.50094, 9.416 � 10�5) 3.06 � 10�5

Mesh 4 (0.50107, 1.070 � 10�4) 5.31 � 10�5
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In the present study, the results were obtained with convergence
criteria on stationarity below 10�12 between two consecutive iter-
ations. Four increasingly fine grids with 6.25 � 104, 2.5 � 105, 106

and 4 � 106 nodes have been used.
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Re = 100

Re = 1000 Re = 3000

u  = -1, u  = 0
1 2
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Fig. 20. Configuration of the double lid driven cavity and streamlines for different Reynolds numbers.
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Fig. 21. Streamlines for the double lid driven cavity for Re = 1000.
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Table 10
Positions (x, y) and intensities of the main vortex.

Reference Main vortex (x, y) Vorticity

Zhou [21] (0.70000, 0.70000) �1.41562
Nithiarasu [22] (0.68950, 0.69690) �1.52363
Present (mesh 1) (0.70099, 0.70070) �1.49753
Present (mesh 2) (0.69996, 0.69996) �1.49974
Present (mesh 3) (0.70000, 0.70000) �1.49858
Present (mesh 4) (0.69999, 0.69999) �1.49838

Table 11
Positions (x, y) and intensities of the secondary vortices.

Reference Lower secondary vortex (x, y) Vorticity

Zhou [21] (0.72560, 0.20000) 2.38559
Nithiarasu [22] (0.85230, 0.20150) 2.60588
Present (mesh 1) (0.84952, 0.19744) 2.60184
Present (mesh 2) (0.85055, 0.19637) 2.59861
Present (mesh 3) (0.85112, 0.19587) 2.59770
Present (mesh 4) (0.85139, 0.19563) 2.59745

Reference Right secondary vortex (x, y) Vorticity

Zhou [21] (1.32500, 0.48440) 0.53846
Nithiarasu [22] (1.32210, 0.48360) 0.65005
Present (Mesh 1) (1.32226, 0.48356) 0.63099
Present (Mesh 2) (1.32243, 0.48353) 0.62956
Present (Mesh 3) (1.32249, 0.48349) 0.62971
Present (Mesh 4) (1.32253, 0.48346) 0.62996
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4.3.1.1. Velocity profiles. In Fig. 22, the velocity profiles at x = 0.7
and y = 0.7 present good accordance with those obtained by Zhou
et al. [21].

4.3.1.2. Positions and intensities of the vortices. Tables 10 and 11 rep-
resent the positions and intensities of the primary and secondary
vortices as a function of the mesh size for Re = 1000. Positions
and intensities of the ternary vortex are shown in Table 12. For
the sake of conciseness, we only focus on the positions and the
intensities of one ternary and two secondary vortices. The others
can be obtained symmetrically in relation to the center of the
cavity. We observed symmetrical values to up to four or five signif-

icant digits. Table 13 displays the positions of the detachment and
reattachment points P i(i = 1,5) defined in Fig. 21. In [21,22], the
authors use coarser grids which could explain the difference be-
tween their values and ours for the primary vortices.

4.3.2. Unsteady flow
In this section, we propose a first insight of an unsteady double

lid driven cavity. The transition process is illustrated for Re = 5000
and Re = 10,000 using time velocity histories, Fourier power spec-
tra and phase-space trajectories.

In the present case, we used mesh 3 (106 nodes). Flow becomes
unsteady and periodic for 3480 < Re < 3500 whereas Zhou [21] pre-
sents an unsteady flow at Re = 3200. This difference can be due to
his coarser grids.

For Re = 5000, the time evolution of u1 and u2 variables, the
phase trajectory on u1 � u2 plane and the power spectrum at the
point (x = 1, y = 1) between t = 69 s and t = 77 s are represented in
Fig. 23. The flow is periodic with a fundamental frequency equal
to 2.1151 Hz. Fig. 24 represents the evolution of the streamlines
during a period giving prominence to the periodicity of the flow
for Re = 5000. The mean flow is not symmetrical. The right lower
vortex is very unstable while the others remain quite stable. This
phenomenon has already been noticed in the 2D lid driven square
cavity [16].

For Re = 10,000, time evolution of u1 and u2 variables, the phase
trajectory on u1–u2 plane and the power spectrum at the point

Fig. 24. Evolution of the streamlines during a period at Re = 5000 (it reads from left
to right and vertically).
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Table 12
Positions (x, y) and intensities of the right ternary vortex.

Reference (x, y) Vorticity

Mesh 1 – –
Mesh 2 (1.39579, 0.40420) �0.002911
Mesh 3 (1.39531, 0.40468) �0.004380
Mesh 4 (1.39522, 0.40478) �0.004718

Table 13
Positions (xi, yi) of the detachment and reattachment points P i(i = 1,5).

Reference P 1(x1, y1) P 2(x2, y2) P 3(x3, y3)

Mesh 1 (1, 0.09999) (1.23999, 0.4) (1, 0.63999)
Mesh 2 (1, 0.09999) (1.23748, 0.4) (1, 0.64499)
Mesh 3 (1, 0.09874) (1.23624, 0.4) (1, 0.64874)
Mesh 4 (1, 0.09937) (1.23563, 0.4) (1, 0.64999)

Reference P 4(x4, y4) P 5(x5, y5)

Mesh 1 – –
Mesh 2 (1.3925, 0.4) (1, 0.4075)
Mesh 3 (1.3900, 0.4) (1, 0.4100)
Mesh 4 (1.3887, 0.4) (1, 0.4112)
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(x = 1,y = 1) between t = 76 s and t = 81 s are represented in Fig. 25.
The flow becomes quasiperiodic with non-negligible variations in
amplitude. The main frequency equals 4.2729 Hz.

5. Conclusion

In this paper, we proposed a method for partitioning 2D block-
structured meshes. The goal was to compute flow simulations on
non-rectangular geometries. Our geometrical partitioner was cou-
pled with the massively parallel solver and preconditioner Hypre
library. Several examples of partitioning are presented to check,
both the efficiency and the performance of our strategy in compar-
ison with other partitioners. Finally, we computed flow on non-
rectangular geometries with very fine grids to propose reference
solutions.
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SUMMARY

We propose a non-iterative method to connect non-matching block-structured meshes applied to the
resolution of the Navier–Stokes equations. The present article gives a complete description of the method
based on the implicit treatment of the connecting condition. We also extend it to curvilinear meshes. The
spatial convergence order of the method is shown to be two and the approach is validated on different
2D laminar flows frequently found in the literature. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A key step in a numerical simulation is the generation of a mesh, the first function of which
is to accurately follow the contour lines of the geometry. Generally speaking, meshes can be
distinguished as structured or unstructured, Cartesian or curvilinear, orthogonal or not, monoblock
or multiblock, etc. The starting point of this work is a computational fluid dynamics (CFD)
code written for one curvilinear, structured and orthogonal block. To extend its use to complex
geometries, it was natural to work on block-structured meshes. The freedom given by non-matching
interfaces allows geometry curves to be followed more precisely thanks to the fact that the blocks
are independent.

We first present the numerical context of this work by describing the models and numerical
methods of our CFD code Aquilon (Aq. on the figures and tables) and continue with a presentation
of the domain decomposition framework.

Next, we propose a method, first introduced in [1], of connecting non-conforming meshes.
It is non-iterative and relies on the implicit treatment of the interface condition. We apply it to
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Cedex, France.

†E-mail: glockner@enscpb.fr
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the Navier–Stokes equations for laminar divergence-free flows in the framework of the augmented
Lagrangian method. Special attention is paid to the interpolation techniques used. For a better
comprehension of the implementation of the method, we present it first for Cartesian block-
structured meshes and then generalize to orthogonal curvilinear coordinate systems.

Finally, we show that the spatial convergence order of the method is two and validate it on
academic test cases such as the flow over a backward facing step, the lid-driven cavity flow and
the flow around a cylinder (stationary or not).

2. NUMERICAL CONTEXT

2.1. Numerical methods

We are interested in the incompressible Navier–Stokes equations:

∇ · u= 0 (1)

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
= −∇ p + ∇ · �(∇u + ∇ tu) (2)

The implementation of the boundary conditions is done thanks to a penalization technique which
derives from a Fourier boundary condition found in thermal science [2] and expressed by

�T
�n

+ Bi(T − T∞) = 0 (3)

where T is the temperature, T∞ a reference temperature, and Bi the Biot number. According to
the values of Bi, one can impose a Dirichlet condition (Bi =∞), a Neumann condition (Bi = 0),
or a Fourier condition if the value of Bi is bounded between 0 and ∞.

A penalization term is added to the Navier–Stokes equations, written BIU(u− u∞) where BIU
is an order 2 diagonal tensor of component (BIUu , BIUv), with 0�BIUu �∞ and 0�BIUv�∞.

Thus, the Navier–Stokes system can be written as

∇ · u= 0 on �

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
+ BIU(u − u∞) = −∇ p + ∇ · �(∇u + ∇ tu) on �

(∇u) · n= 0 on ��

(4)

Time implicit discretization is used and the inertial term is linearized at order one. The resolution
of the Navier–Stokes equations requires a consistent pressure and a divergence-free velocity field
to be obtained at each time step. This coupling is difficult to treat for incompressible flows where
pressure does not appear explicitly in the mass conservation equations. Two classes of methods
exist, depending on the fact whether the Navier–Stokes operator is split or not:

• None time splitting and exact space methods:

◦ Coupled resolution of velocity and pressure. It is tedious and complex because the matrices
are very ill conditioned.

◦ Artificial compressibility method described by Peyret and Taylor [3]. It takes into account
a perturbation parameter which acts on pressure in the mass continuity equation. Pressure

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1239–1268
DOI: 10.1002/fld
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is eliminated from the momentum equations. This technique often gives ill-conditioned
matrices and needs an iterative method such as the Uzawa algorithm [4].

◦ Implicit approaches which are minimization methods under constraint. The augmented
Lagrangian method is one of them and has been analysed by Fortin and Glowinski [5]. It
is used in our code for laminar, incompressible, turbulent, multiphase flows [2, 6–9] and
is described later on.

• Time splitting methods. These consist of a prediction/diffusion step and a correction/projection
one for the velocity and pressure field. The following methods are often distinguished:

◦ Projection methods introduced by Chorin [10, 11] and their variants [12, 13].
◦ Incremental methods for the pressure correction introduced by Goda [14] and then improved
by Timmermans et al. [15].

◦ Prediction/correction algorithms such as SIMPLE (semi implicit method for pressure linked
equations) or SIMPLER (SIMPLE revised) [16, 17] which use a pressure correction equa-
tion to modify the velocity field.

2.1.1. The augmented Lagrangian method. The book of Fortin and Glowinsky [5] presents numer-
ous applications of this method applied to the resolution of partial differential equations, especially
the Stokes and Navier–Stokes problems. The Stokes system is formulated as a velocity–pressure
minimization–maximization problem requiring the computation of a saddle point (u, p) associated
with the augmented Lagrangian of the problem. The pressure is considered as a Lagrange multiplier
and the incompressibility constraint is introduced implicitly into the momentum equations. Then,
the saddle-point (u, p) is computed using an iterative Uzawa algorithm. On a more formal point
of view, if

L2(�) =
{
f,
∫

�
| f |2 d�<∞

}

H1
0 (�) =

{
f ∈ L2(�),

� f

�xi
∈ L2(�), i ∈ [1, 3], f |�� = 0

}

a functional J (v) is defined for each v∈ H1
0 (�), resulting from the weak formulation of the

momentum equations, and has to be minimized under the constraint

M ={v∈ H1
0 (�), ∇ · v= 0}

which is equivalent to find u∈ M such as

J (u) = min
v∈M(J (v)) (5)

The constraint is then satisfied thanks to a Lagrange multiplier q , transforming the problem
with the constraint M to a problem without constraint. The Lagrangian is defined as

L : M × L2 → �

(v, q) 	→ Lr (v, q) = J (v) −
∫

�
q∇ · v d�

(6)
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The minimization problem consists of finding the saddle-point (u, p) ∈ M × L2 of the
Lagrangian L which verifies

L(u, p) = min
v∈M

(
max
q∈L2

(L(v, q))

)

= max
q∈L2

(
min
v∈M (L(v, q))

)
(7)

To improve the convergence properties, for each (v, q)∈ M × L2, the augmented Lagrangian is
defined as

Lr : M × L2 → �

(v, q) 	→ Lr (v, q) = J (v) −
∫

�
q∇ · v d� +

∫
�

dr

2
|∇ · v|2 d�

(8)

A saddle-point of L is also a saddle-point of Lr (and reciprocally). It is demonstrated for the
Stokes problem and admitted for the Navier–Stokes equations, that, coming back to the strong
formulation, the saddle-point is also the solution of the system

∇ · u= 0

�

(
�u
�t

+ ∇ · (u ⊗ u)

)
+ BIU(u − u∞) = −∇ p + ∇ · �(∇u + ∇ tu) − dr∇(∇ · u)

(9)

The calculation of the solution is done thanks to the Uzawa iterative method [5] which generates
the following k-iterations (uk, pk) that can be stopped by setting a criterion based on the divergence
of the velocity field, i.e. ‖∇ · u‖��, with � small

Initialization
uk=0 = un and pk=0 = pn

Iterations
for k = 0, K − 1
computation of uk+1 solution of:

�n
(
uk+1

�t
+∇ · (uk+1 ⊗ uk)−uk+1∇ · uk

)
+BIU(uk+1−u∞)

= − ∇ pk + ∇ · �(∇uk+1+∇ tuk+1)+dr∇(∇ · uk+1)+�
uk

�t

(10)

updating of pk+1 with:
pk+1 = pk − dp∇ · uk+1

Solution
un+1 =uK , pn+1 = pK

It has been demonstrated [5] for the Stokes equations that the Uzawa algorithm converges under
the condition 0<dp�2dr . The use of high values of dr (up to 104, 105) increases the convergence
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of the algorithm but leads to ill-conditioned matrix associated to the discretization of the problem.
Nevertheless, associated with a direct solver, this can be a judicious choice.

From a practical point of view, for the test cases described below, we have chosen dp= dr and
one to four iterations of the Uzawa algorithm. For a stationary problem, one iteration is enough,
convergence being done on the time iterations. For unstationary problems, we have used four
iterations at each time step to reach divergence level below 10−5.

Contrary to the time splitting methods, this algorithm does not even suffer from error introduced
by the splitting of the operators. The precision of the method is only driven by the time and space
schemes precisions. Finally, it has to be noted that no boundary condition is needed for the pressure,
which is calculated explicitly in the whole domain.

Verifying the incompressible constraint at the computer precision can be expensive with regard
to the CPU time. When the Uzawa algorithm is applied with few iterations, the resulting divergence
of the velocity field is small but not identically null. To circumvent this drawback, we have used
the vectorial projection method introduced by Caltagirone and Breil [18].

2.1.2. Vectorial projection method. Velocity un+1 is decomposed into u∗+u′ where u∗ is computed
by the augmented Lagrangian step and is considered as a predictive divergence-free velocity. The
latter verifies

�n
(
un+1

�t
+ ∇ · (un+1 ⊗ un) − un+1∇ · un

)
+ BIU(un+1 − u∞)

=−∇ pn + ∇ · �(∇un+1+∇ tun+1) + dr∇(∇ · un+1) + �
un

�t
(11)

By replacing un+1 by u∗ + u′ in (11), and with dr →∞, we obtain

∇(∇ · un+1) = ∇(∇ · u∗) + ∇(∇ · u′) = 0 (12)

or

∇(∇ · u′) =−∇(∇ · u∗) (13)

Both velocities un+1 and u∗ satisfy the physical boundary conditions. We deduce that the
boundary conditions of u′ are homogeneous.

The existence of the solution of the algebraic square system associated with Equation (13) is
ensured by the fact that the second member is in the range of the discrete operator. In addition,
one can check that the image is orthogonal to the kernel and thus their intersection is reduced to
the null vector. The latter property makes possible to ensure the uniqueness of the solution, at least
when the system is solved by an iterative method of Krylov type (BiCGStab in our case) while
starting the iterative algorithm by an initial guess in the range of the operator (zero for example).

2.1.3. Spatial discretization. This is based on the finite volume method on velocity–pressure
staggered grids of the Marker and Cells type [19]. Pressure unknowns are associated to the cell
vertices, whereas velocity component are face centred. The centred scheme of order 2 is used in
this work for the inertial and constraint terms.

A Dirichlet boundary condition on the normal component of the velocity field has to be verified on
the pressure nodes which belong to the physical boundary. The existence of velocity points outside
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the domain requires to write the penalization term of the Navier–Stokes equations BIU(u−u∞) as
BIU(flim(u)−u∞) where flim is a linear combination of the discrete unknowns (a centred scheme
is used).

The linear system is sparse, composed of nine diagonals in 2D. The multifrontal spare direct
solver MUMPS [20] is used to solve the Navier–Stokes linear system and a BiCGStab iterative
solver, ILU preconditioned, is used for the linear system associated with the vectorial projection
method.

2.2. On some domain decomposition methods

In this numerical context, it is natural to be interested in domain decomposition techniques which
offer a general framework for the treatment of block interfaces. Domain decomposition is based
on the idea that the solution of a global problem can be obtained by assembling solutions of
smaller, more regular ones. There are two fields of application: the first concerns the resolution
of large linear systems, the second multiphysical problems (scale change, fluid/structure coupling,
heterogeneous domains, etc.).

The principle of domain decomposition is quite simple. The domain is divided into sub-domains
on which the original problem is written again in such a way that solutions are coupled thanks to
appropriate conditions on the interfaces. Iterative techniques are usually used to solve the problem.
The main example is the Dirichlet/Neumann algorithm for the Laplacian problem where the
transmission condition connects the variables and their normal derivatives [21].

Generally speaking, domain decomposition deals with overlapping (or not) and conforming
(or not) sub-domains. Historically, H. A. Schwarz was the originator of these techniques, with
the additive and multiplicative algorithms. The main drawback of the Schwarz method is that
overlapping is necessary for convergence. An improvement consists in replacing overlapping by
a supplementary condition, the literature for which is very rich. The Dirichlet condition can be
replaced by a Robin condition [22].

Our strategy is to work with overlapping. The challenge is then to find an adequate projection
operator on the interfaces between the blocks. In this field, the mortar method has been proposed
[23–25]. A method, based on the Robin condition, also deals with these problems [26, 27].

Another approach, the Chimera method [28, 29], is generally applied to aeronautical problems.
Originally, this method aims to simplify mesh generation, coupling between blocks being achieved
by an iterative Dirichlet/Dirichlet condition. Other interface conditions have also been proposed
[30] (Dirichlet/Neumann, Dirichlet/Robin). Brezzi et al. [31] have proved that the Chimera method
is a variant of the Schwarz algorithm.

Non-matching meshes raise the classical question of interpolation. This difficulty becomes
important when it is necessary to interpolate under constraint (here ∇ · u= 0). The question is to
know if precise and conservative operators exist. Generally, interpolation is conservative when it is
based on finite volume techniques [32]. Fluxes (of mass, momentum or energy) through interfaces
are calculated using local balance with a neighbouring block or a projection. Non-conservative
interpolation is based on mathematical interpolation of the variables (Lagrange interpolation for in-
stance). Some authors who use a non-conservative interpolation have shown that mass conservation
is directly linked to the order of the interpolation method [33]. Although the conservative/non-
conservative dilemma remains important, it has been minimized by Meakin [34]. According to
him, what is important in the treatment of the interface is the sharpness of the grid. A precise
non-conservative method can give better results than a less precise conservative one.
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2.2.1. Towards an implicit connection between blocks. We have chosen an implicit resolution of
the conservation equations and the connecting conditions at the interface. The method is built on
non-conservative interpolation of the variables. Polynomial coefficients are present in the global
linear system and couple, at the same time, the solution both at each block and at the interfaces. This
method can be seen as a non-iterative, implicit Dirichlet/Dirichlet condition for which minimal
overlapping is necessary.

3. AN IMPLICIT METHOD FOR CONNECTING BLOCKS

Block-structured meshes allow a domain to be cut out according to the geometric contour. Generally,
blocks have different orientations from one another, which induces a discontinuity of the mesh lines
through the interfaces. We must connect the blocks by transferring the missing information from
block to block. Polynomial interpolations are built and integrated as special boundary conditions
in the global linear system. The proposed solution for transferring the information between blocks
consists in implicitly interpolating a field � at the nodes situated on the interfaces by using the
nodes of the adjacent block. This interpolation can be considered as a new implicit boundary
condition used for the discretization of the equation at the nodes strictly inside the different blocks
(see Figure 1).

We will first present the method in the case of Cartesian blocks with parallel interfaces, then
extend it to the case of Cartesian blocks of any orientation, and finally generalize it to curvilinear
grids.

3.1. Parallel blocks

The variable � (u or v) defined on block (b) is interpolated, which gives the new boundary condition
on block (a). We recall that the penalization term of the momentum equations used for the boundary
conditions is written BIU(flim(u) − u∞). Here, the expression of u∞ at the nodes of an interface
is the result of the interpolation of the values of u on the adjacent block. The interpolation of the
normal component of the velocity field to the interface is performed on pressure nodes, whereas
velocity nodes are used for interpolating the tangential component (see Figure 2).

Interpolation is based on the construction of a polynomial basis of a given order. For instance,
if � represents u or v, the interpolation of � at a point M0(x0, y0) that belongs to a block (a) (or

Figure 1. Connecting method for non-conforming meshes.
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Figure 2. Interpolation of the velocity vector on a staggered grid.

at a point M ′
0(x0, y0) for v), is obtained from the values of � on block (b) by the relation:

�(a)(x0, y0) = fint(�
(b)
i ) =

N∑
i=1

Fi (x0, y0)�
(b)
i (xi , yi ) (14)

in which the Fi are the values at the point (x0, y0) of the N polynomials that constitute the
polynomial basis, and �(b)

i are the N values of the field � at the interpolation nodes Mi (xi , yi ) of
block (b).

The interpolations must now be constructed locally to each node of the interface. The technique
consists in building a canonical basis of Q-type polynomials of order d thanks to the neighbouring
nodes of M0(x0, y0). The number of nodes required depends on the order of the chosen polynomial.

In order to reduce the values of the coefficient of the polynomial, M0 is chosen as the centre of
the frame. A polynomial Q(d)

i built using the Mi nodes, 1�i�(d + 1)2 is written

Q(d)
i (x − x0, y − y0) =

d∑
m=0

d∑
n=0

amni (x − x0)
m(y − y0)

n (15)

It has the following properties:

∀i, j, 1�i, j�(d + 1)2, Q(d)
i (x − x0, y − y0) = �i j (16)

A (d + 1)2x(d + 1)2 linear system is built (17), Equation (16) being a line of the matrix.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a001 · amn1 · add1

· · ·
a00i amni addi

· · ·
a00(d+1) · amn(d+1) · add(d+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · 0 · 0

· · ·
0 · 1 · 0

· · ·
0 · 0 · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
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Figure 3. Representation of the Navier–Stokes matrix on 2 blocks.

with B given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1 − x0)
0(y1 − y0)

0 · (xi − x0)
0(yi − y1)

0 · (xd+1 − x0)
0(yd+1 − y0)

0

· · ·
(x1 − x0)

m(y1 − y0)
n (xi − x0)

m(yi − y1)
n (xd+1 − x0)

0(yd+1 − y0)
n

· · ·
(x1 − x0)

d(y1 − y0)
d · (xi − x0)

d(yi − y1)
d · (xd+1 − x0)

0(yd+1 − y0)
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The inversion of the linear system (one for each interface node) is carried out once during the
preparation step of a simulation (before the time loop resolution). The value of the field � at node
M0(x0, y0) is then given by

�(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0)�(b)(xi , yi ) (19)

It can be seen that the polynomial coefficients Qd
i (0, 0) are not time dependent. By writing

Equation (19) at time n + 1, the Q(d)
i can be placed in the linear system (see Figure 3) of the

momentum equations. Thus, on a matrix line corresponding to an interface node, non-zero elements
are the main diagonal and the elements with a column number correspond to the unknowns used
to interpolate the field.

3.2. Cartesian blocks with any orientation

In the general case, the interface is not parallel to the mesh lines of the adjacent block. We consider
now the case of two blocks (a) and (b) with non-collinear local frames (i (a), j (a)) and (i (b), j (b))
(see Figure 4). Both components of the velocity vector are thus necessary for the interpolation
of each component. Frame changes are then required. As the velocity vector can be defined at
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Figure 4. Interpolation of the velocity vector with frame change.

Figure 5. Interpolation of the velocity vector (curvilinear mesh).

the pressure node, the interpolation is performed at these nodes. Thus, for each component, the
number of interpolations is doubled compared to the previous case:

u(a)(x0, y0) = cos �
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

i (xi , yi ) − sin �
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

i (xi , yi )

v(a)(x ′
0, y

′
0) = sin �

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
i ′ (xi ′, yi ′) + cos �

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
i ′ (xi ′, yi ′)

(20)

with � the angle between the frames (i (a), j (a)) and (i (b), j (b)), and u(b), v(b) the velocity com-
ponents at the pressure node.

3.3. Curvilinear blocks

In the case of curvilinear blocks, the velocity field is defined on a local frame that is different at
each point of the domain (see Figure 5).
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It is necessary to make frame changes locally to each node. Let (i (a), j (a)) be the frame of an
interface node. We have

u(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0)u(b)

0 (xi , yi )

v(a)(x ′
0, y

′
0) =

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0)v(b)
0 (xi ′, yi ′)

(21)

where u(b)
0 and v

(b)
0 are expressed in the frame (i (a), j (a)). The frame change from (i (b), j (b)) to

(i (a), j (a)) gives

u(b)
0 (xi , yi ) = cos(�i )u

(b)
i (xi , yi ) − sin(�i )v

(b)
i (xi , yi )

v
(b)
0 (x ′

i , y
′
i ) = sin(�i )v

(b)
i ′ (xi ′, yi ′) + cos(�i )v

(b)
i ′ (xi ′, yi ′)

(22)

We obtain

u(a)(x0, y0) =
(d+1)2∑
i=1

Q(d)
i (0, 0) cos(�i )u

(b)
i (xi , yi ) − sin(�i )v

(b)
i (xi , yi )

v(a)(x ′
0, y

′
0) =

(d+1)2∑
i ′=1

Q(d)

i ′ (0, 0) sin(�i )v
(b)
i ′ (xi ′, yi ′) + cos(�i )v

(b)
i ′ (xi ′, yi ′)

(23)

Finally, the expression for the penalization term on an interface node is given by BIU(flim(u)−
fint(u)), with

fint(u) =

⎛
⎜⎜⎜⎜⎝

N∑
i=1

�iuu
(2)(xi , yi ) +

N∑
j=1

	iuv
(2)(xi , yi )

N∑
i=1

�ivu
(2)(xi , yi ) +

N∑
j=1

	ivv
(2)(xi , yi )

⎞
⎟⎟⎟⎟⎠ (24)

Coefficients �iu , �iv , 	iu and 	iv contain the expressions of frame changes, the values of
interpolation polynomials, and the interpolation coefficients of the velocity on the pressure grid.

Pressure is also interpolated to ensure continuity of the pressure (to the order of the interpolation
polynomial).

3.4. Mass conservation

The non-conservative interpolation produces non-conservation of the mass between the blocks.
Divergence is not null, especially at the interface nodes. We observe two behaviours: in the case
of confined flows (driven cavity problem for instance), divergence levels are almost constant on
each block; in the case of open flows (flow around a backward facing step, around a cylinder for
instance), divergence is null on the whole domain except at the interface nodes. Even if, as we
will see, the results of a series of test cases are good, this remains a drawback of the method. We
propose to apply a correction to the method locally to each block, the mass non-conservation on
the whole domain remaining unchanged.
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From the predictive velocity field u∗ given by the Uzawa algorithm, we modify the boundary con-
ditions associated with the vectorial projection method on each block using the Green–Ostrogradski
formula (25) which links the integral of the velocity divergence over the whole block to the flow
rate at the interface ∫∫∫

�i

∇ · u∗ dv =
∫∫

��i

u∗ · n ds (25)

The idea is to recover flow rate conservation on the boundary of each block by applying a
velocity correction ũ∗ such that ∫∫

��i

(u∗ + ũ∗) · n ds = 0 (26)

With Equation (25), we have∫∫
��i

ũ∗ · n ds = −
∫∫∫

�i

∇ · u∗ dv (27)

The correction is applied only at the interfaces �i of each block because boundary conditions
are already satisfied at the physical boundaries. Therefore, locally to each block, we have∫∫

�i

ũ∗ · n ds =−
∫∫∫

�i

∇ · u∗ dv =−D�i (28)

Thus, we can consider a homogeneous or a local correction at each interface node.
If ũ∗

l is the correction applied to the velocity u∗
l at an interface node, nl the outward normal

and Sl the local section, the homogeneous correction is written

ũ∗
l · nl = D�i∑N

j=1S j
(29)

And the local correction depending on the local flow rate is given by

ũ∗
l · nl = D�i (u

∗
l · nl Sl)

S j
∑N

j=1 u
∗
l · nl S j

(30)

This correction can be applied to the vectorial projection method to ensure ∇ · (u∗ + u′) = 0
locally to each block. The correction ũ∗ is used to set a Dirichlet boundary condition on the interface
(see Equation (31)). A few iterations of a BiCGStab with ILU preconditioning are enough to reach
null divergence on each block.

Solution of the augmented Lagrangian u∗ =uK and p∗ =pK

Vectorial Projection

• at each interface �i of section Si associated with a block �i ,
calculation of ũ′∞i from equation:

ũ′∞i = − D�i

Si
ni (31)

• calculation of u′ solution of:

∇(∇ · u′) + BIU(flim(u′) − ũ′∞) = − ∇(∇ · u∗)
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4. CONVERGENCE STUDY

4.1. Poiseuille flow (Cartesian meshes)

Simulations were carried out on the various block-structured meshes shown in Figure 6. Results
are given for convergence criteria below 10−10 for stationarity.

With a Q1 polynomial, the solution of Poiseuille flow, which is of order 2, cannot be reproduced
without errors (see Table I). With Q2 or Q3 polynomials, errors are close to the computer accuracy.

4.2. Green–Taylor vortex

The main interest of this flow is that, unlike in Poiseuille flow, the inertial term is not null. The
Green–Taylor vortex is modified to obtain a stationary solution not identically null. The momentum
equations are enriched by the following source term:

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 
2�

2H2
cos

( 
x

2H

)
sin
( 
y

2H

)

− 
2�

2H2
sin
( 
x

2H

)
cos

( 
y

2H

) (32)

The solution is

u(x, y, t) = − cos
( 
x

2H

)
sin
( 
y

2H

)
(1 − e−
2�t/2H2

)

v(x, y, t) = − sin
( 
x

2H

)
cos

( 
y

2H

)
(1 − e−
2�t/2H2

)

p(x, y, t) = −�

2

(
cos2

( 
x

2H

)
+ cos2

( 
y

2H

))
(1 − 2e−
2�t/2H2 + e−
2�t/H2

)

(33)

The boundary conditions are obtained directly from the analytical solution and are modified at
each time step. The test case was run with two non-conforming structured blocks (see Figure 7).

Figure 6. Representation of the different blocks for Poiseuille flow study; the number of
elements per block is indicated.

Table I. L2 norm of the error for Poiseuille flow.

Case 1 Case 2 Case 3 Case 4 Case 5

Q1 1.98× 10−3 7.81× 10−3 3.63× 10−2 2.05× 10−2 1.04× 10−3

Q2 1.02× 10−10 4.36× 10−13 3.18× 10−10 2.32× 10−12 4.15× 10−13

Q3 1.75× 10−10 2.71× 10−13 7.73× 10−9 30.3× 10−12 5.66× 10−13
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Figure 7. Block-structured mesh example for the Green–Taylor flow study.

Figure 8. L2 norm of the error as a function of mesh size for the Green–Taylor flow study.

Table II. L∞ norm of the error on velocity field at T = 1 s.

�t (s) 0.1 0.05 0.01 0.005 0.001

L∞ error 7.72× 10−4 3.87× 10−4 7.93× 10−5 4.08× 10−5 1.00× 10−5

Local slope 0.99 0.98 0.96 0.87
(in log/log scale)

The domain is a square of side length 0.2m (H = 0.1). The fluid used has a density of
1.176 kg/m3 and a viscosity of 1.85× 10−5 Pa s.

Simulations were performed using or not using the vectorial projection method. We first focus
on the stationary solution. With Q2 interpolation polynomials, the spatial convergence order is
two, as shown in Figure 8. Validation on pressure was not established. Indeed, divergence at the
end of the Uzawa algorithm was not null (around 10−6) and accumulated in the pressure.

Then, a time convergence study has been carried out (a two blocks non-conforming mesh size
of 4300 nodes is used). Errors on velocity field at time T = 1 s are presented in Table II. Local
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Figure 9. Block-structured curvilinear meshes.

Figure 10. Convergence order for radial flow; radial (left) and polar (right) sections.

slope in a log/log scale gives a time convergence order of one, coherent with the scheme used
(Euler time scheme and linearization at order 1). With very small time step, the stagnation of the
error is due to the saturation of the time error by the spatial one.

4.3. Couette and radial flows (curvilinear meshes)

In order to validate the method on 2D curvilinear meshes, we studied the spatial convergence order
on two academic cases (Couette and radial flows) based upon two structured non-conforming blocks
(see Figure 9). The interfaces can be along the radius or at a constant angle (radial or polar section).

Results are presented for each type of section and for Q1, Q2 and Q3 interpolation polynomials.
The L1 norm of the error compared to the analytical solution was chosen to represent the order
of convergence.

As shown in Figures 10 and 11, the spatial convergence order is 2 whatever the polynomial
used. We note that the level of errors obtained with the Q1 polynomial is higher than for the Q2

and Q3 polynomials.
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Figure 11. Convergence order for Couette flow; radial (left) and polar (right) cutting.

Figure 12. L1 norm of the velocity divergence for radial flow (polar section).

4.4. Conclusion on the convergence order of the method

Generally speaking, it can be observed that the spatial convergence order of the code is not
deteriorated by the interpolation. The Q1 polynomial is not really interesting because error levels
are too high. The Q3 polynomial is not of a great interest: error levels are slightly lower than with
the Q2 polynomial but they need many more points to interpolate. Moreover, velocity divergence
levels are also dependent on the order of interpolation (see Figure 12). For the further simulations,
we chose the Q2 polynomial because it was a good compromise between error level, velocity
divergence and ease of implementation.

5. NUMERICAL SIMULATIONS

5.1. Driven cavity (Re= 1000)

5.1.1. Description of the test case. Since the early work of Burggraf [35], lid-driven cavity flow
has been considered as a classic test problem for the assessment of numerical methods and the
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Figure 13. Streamlines of the driven cavity flow.

Table III. Comparison of the intensity and the position (x, y) of the main vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) 0.11877 0.4687 0.5664
Aq. monoblock 5122 0.11893 0.4693 0.5642
Botella and Peyret 5122 0.11894 0.4692 0.5652
Bruneau 2562 0.1163 0.4687 0.5586
Barragy et al. 2562 0.11893 — —
Schreiber et al. 1412 0.11603 0.4714 0.5643
Ghia et al. 1282 0.11793 0.4687 0.5625

validation of CFD codes. In the present article, we refer to the work of Botella and Peyret [36].
Their article is a benchmark rich in References [37–40], for which the main results are given
for the singular driven cavity flow at a Reynolds number of 1000. The upper boundary tangential
velocity leads to the formation of a main vortex that fills the main part of the cavity. In the lower
corners, secondary and ternary vortices appear (see Figure 13).

The mesh is divided into five structured blocks (see Figure 13): the first block occupies the main
part of the domain; the two lower (upper) blocks have step spaces a third (half) the size of the
main block. There are 121 344 elements (≈ 256× 256 on the main block, 64× 64 for an upper
block and 96× 96 for a lower one). In this case, the block-structured mesh is used to refine the
description of the flow in the corners of the domain.

The main results found in the literature are given on the intensity and position of the vortices.
Our results are obtained with convergence criteria on stationarity below 10−12. We also present
results obtained on a monoblock mesh with a Chebychev polynomial step size variation.

5.1.1.1. Position and intensity of the vortices. The results presented in Tables III–VII show a
good correlation between our values and those of other authors.

5.1.1.2. Velocity and pressure profile. Figures 14 and 15 show comparisons of the velocity
profiles between monoblock, block-structured and those obtained by Bottela and Peyret [36].
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Table IV. Comparison of the intensity and the position (x, y) of the left secondary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −1.7285× 10−3 0.1354 0.1120
Aq. monoblock 5122 −1.7314× 10−3 0.1358 0.1116
Botella and Peyret 5122 −1.7297× 10−3 0.1360 0.1118
Bruneau 2562 −1.91× 10−3 0.1289 0.1094
Schreiber et al. 1412 −1.7× 10−3 0.1357 0.1071
Ghia et al. 1282 −1.7210× 10−3 0.1406 0.1094

Table V. Comparison of the intensity and the position (x, y) of the right secondary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −2.3481× 10−4 0.9167 0.0781
Aq. monoblock 5122 −2.3347× 10−4 0.9157 0.0776
Botella and Peyret 5122 −2.3345× 10−4 0.9167 0.0781
Bruneau 2562 −3.25× 10−4 0.9141 0.0820
Schreiber et al. 1412 −2.17× 10−4 0.9143 0.0714
Ghia et al. 1282 −2.3113× 10−4 0.9141 0.0781

Table VI. Comparison of the intensity and the position (x, y) of the left ternary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) −4.7314× 10−8 0.00781 0.00781
Aq. monoblock 5122 −5.0239× 10−8 0.00789 0.00736
Botella and Peyret 5122 −5.0399× 10−8 0.00768 0.00765
Ghia et al. 1282 −9.3193× 10−8 0.0078 0.0078

Table VII. Comparison of the intensity and the position (x, y) of the right ternary vortex.

Reference Mesh size Maximum streamline X Y

Aq. block-structured 121 344 (≈ 3482) — 0.9952 0.00463
Aq. monoblock 5122 6.3462× 10−9 0.9950 0.00497
Botella and Peyret 5122 6.33255× 10−9 0.9951 0.00482
Bruneau 1282 3.06× 10−9 0.9961 0.0039

Small differences on velocity profiles between the monoblock and block-structured solutions can
be explained by grid resolution differences. As regards the pressure profiles (see Figure 16), good
agreement can be observed with those obtained with a monoblock mesh, except on the interface
of the upper blocks. The overpressure (depression) observed in the upper right (upper left) block
is the result of the velocity divergence levels, which are constant in each block (around 10−5).
We did not observe these phenomena on other test cases presented in this paper where pressure
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Figure 14. U profiles (left) at X = 0.5 and V profiles (right) at Y = 0.5.

Figure 15. U profile (left) at X = 0.1 and 0.9. V profile (right) at Y = 0.1 and 0.9.

was continuous through the interfaces. There is no doubt that a Neumann condition relaxes the
constraint through the different blocks. When the domain is closed, a lack of conservation of mass
and momentum due to interpolation explain the pressure shift observed.

5.2. Flow around a backward facing step (Re�1000)

5.2.1. Description of the test case. The backward-facing step is one of the most fundamental
examples where laminar separation is caused by the sudden change in the geometry. The extension
of the section induces a reverse pressure gradient that leads to a separation of the flow into several
zones: a recirculation appears behind the step and, when the Reynolds number increases, a second
recirculation appears on the upper wall. The experimental reference works are those of Armaly
et al. [41] and, to a lesser degree, the work of Lee and Matescu [42]. The Reynolds number, based
on the height of the channel Hd , the bulk velocity at the entrance of the channel Umoy and the
kinematic viscosity, vary between 100 and 1000.
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Figure 16. Pressure profiles at X = 0.1, 0.5 and 0.9.

Figure 17. Block-structured mesh for the backward-facing step flow.

Armaly’s experiments were performed on a channel of width equal to 36.7 times the step
height. Flow can be considered as 2D below Re= 400, wall effects being not negligible for higher
Reynolds numbers. Comparisons between the experiments and the results of other authors were
made on the detachment and reattachment positions.

In the present work, we used a monoblock mesh and a block-structured one (see Figure 17):
the domain was divided into three blocks, the middle one being twice as fine as the others. The
interface between block 2 and block 3 was positioned at the middle of the recirculation, at a
distance of 6.5m from the step foot (see Figure 18).

We will compare the results obtained using two non-conforming meshes (3456 and 24 576
elements) with those obtained with a monoblock mesh and those of several other authors. The
stationarity criterion was set to 10−10 whatever the Reynolds number. We have separated the results
in two parts: for Re�400 and for Re>400. In the first case, there is no upper recirculation and 3D
effects are negligible.

5.2.1.1. Lower recirculation Re�400. Agreement with the experiments and various numerical
results [15, 43–45] is very good as shown in Figure 19.

These results were obtained without the vectorial projection method. Velocity divergence is
null over the whole domain except at the interface node where it is around 10−4 due to the non-
conservative interpolation. We performed other simulations with the vectorial projection method.
Therefore, divergence is null on the interface without any strong influence on the recirculation
length as shown in Table VIII.
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Figure 18. Streamlines through the interfaces (Re= 500).

Figure 19. Recirculation length (Xr/H) for Re� 400. Xr is the length of the lower
recirculation and H the step height.

Table VIII. Influence of the vectorial projection method on the recirculation
length (Re�400).

Re 100 200 300 400

Recirculation length 2.99 5.06 6.79 8.30
Correction in % 4.3× 10−2 2.3× 10−1 4.2× 10−2 5.1× 10−2

5.2.1.2. Lower recirculation for Re>400. The upper recirculation appears and the reattachment
point of the lower recirculation continues to move off the foot of the step. The experimental
results of Armaly and Lee are quite different (see Figure 20). If we compare our results to those
of Armaly, the length of the lower recirculation is underestimated with an error of 8.6% by the
monoblock mesh and 9% by the block-structured one at Re= 500. At Re= 1000, errors are around
19%. Williams and Baker [45] have shown with a 3D simulation that these differences are due
to 3D effects. Indeed, most other 2D numerical studies found in the literature [43–47] show the
same order of error (see Figure 20 and Table IX).
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Figure 20. Lower recirculation length (Xr/H) for Re>400.

Table IX. Lower recirculation length, Re= 800.

Lee Armaly Aq. monoblock Aq. block-structured Lee Gartling Kim Sohn

Xr 12.9 14.2 12.05 11.99 12 12.2 12 11.6

Table X. Influence of the correction on the lower recirculation length (Re>400).

Re 500 600 700 800 900 1000

Recirculation length 9.53 10.50 11.29 12 12.65 13.28
Correction in % 4.2× 10−2 7.6× 10−3 4.4× 10−3 1.7× 10−2 1.9× 10−2 2.4× 10−2

Finally, Table X shows very low differences if we use the vectorial projection method to reach
null divergence over each block.

5.2.1.3. Upper recirculation for Re>400. The abscissa of the detachment point on the upper
wall is underestimated, from Re= 600, compared to the results of Armaly (see Figure 21 left).
Compared to the Lee’s results, it is overestimated until Re= 750 and then underestimated. Again,
3D effects explain these differences. They are less obvious if one looks at the abscissa of the upper
reattachment point (see Figure 21 right).

It must be noted that the length of the upper recirculation at Re= 800 is overestimated by around
18% with a monoblock mesh and by 15% with a block-structured one. As noted by Armaly, the
lengths of the lower and the upper recirculations are strongly coupled, an underestimation of one
of them involving an overestimation of the other. Our results are in agreement with other numerical
studies found in the literature (see Table XI).

The flow rate difference between the entrance and the exit of the domain is around 6.10−4 m3 s−1

whatever the Reynolds number. The non-conservative interpolation finally has little influence on
the accuracy of the results. Velocity divergence on the interface between the blocks is relatively
small, and decreases with mesh refinement as shown in Figure 22.
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Figure 21. Abscissae of the detachment (Xs) and reattachment (Xrs) points versus Reynolds number.

Table XI. Comparison of the abscissae of the detachment and reattachment points at Re= 800.

Exo. Lee Exp. Armaly Aq. monoblock Aq. block-structured Lee Gartling Kim Sohn

XS 10.3 11.5 9.69 9.80 9.6 9.7 — —
Xrs 19.5 20 20.57 20.41 20.6 20.96 — —
Xrs − Xs 9.2 8.5 10.88 10.61 11 11.26 11.5 9.26

Figure 22. Mean divergence on the block interface as a function of the mesh size
for different Reynolds numbers.

Figure 23 shows several velocity profiles and a good agreement between the monoblock and
the block-structured solutions. The non-conservative interpolation does not produce significant
differences with conforming meshes.
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1262 C. ROMÉ, S. GLOCKNER AND J. P. CALTAGIRONE

5.3. Flow around a cylinder

The flow around a cylinder has been widely studied from the theoretical, experimental and numerical
points of view. The problem can be characterized by the Reynolds number, based on the diameter
of the cylinder and the entrance velocity. We are interested in two flow ranges:

• 4<Re<49: the inertial term of the momentum is not negligible. One can observe a detachment
of the streamlines around the cylinder and the presence of two symmetrical, stable vortices,
the lengths which increase with the Reynolds number.

• 49<Re<190: the flow is not stationary. The result is a Von Karman alley with alternating vortex
detachment, the frequency of which increases with the Reynolds numbers characterized by the
Strouhal number.

5.3.1. Parameters of the test case. To validate our method, we studied the length of the recir-
culation; the detachment angle and the drag coefficient Cx for Reynolds numbers below 49. We
compared our results with the experimental work of Taneda [48], Tritton [49], Acrivos et al. [50],
Coutanceau and Bouard [51], and with the numerical works of Dennis and Chang [52], Nieuw-
stadt and Keller [53], Fornberg [54] and, more recently, He and Doolen [55]. For higher Reynolds
number, we compared our results on the Strouhal number to the law of Williamson and Brovon
[56], which is in good agreement with experiments.

Figure 23. u component profiles for monoblock and block-structured meshes at Re= 800.

Figure 24. Block-structured mesh composition for the study of the flow around a cylinder.
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Table XII. Recirculation length, detachment angle and drag
coefficient at Re= 10.

Authors L/r �d Cx

Aq. block-structured 0.549 25.47 3.077
Dennis and Chang [52] 0.53 29.6 2.846
Nieuwstadt and Keller [53] 0.434 27.96 2.828
Coutanceau and Bouard [51] 0.68 32.5 —
He and Doolen [55] 0.474 26.89 3.170

Table XIII. Recirculation length, detachment angle and drag
coefficient at Re= 20.

Authors L/r �d Cx

Aq. block-structured 2.16 41.98 2.070
Dennis and Chang [52] 1.88 43.7 2.045
Nieuwstadt and Keller [53] 1.786 43.37 2.053
Coutanceau and Bouard [51] 1.86 44.8 —
Fornberg [54] 1.82 — 2.000
He and Doolen [55] 1.842 42.96 2.152

Table XIV. Recirculation length, detachment angle and drag
coefficient at Re= 30.

Authors L/r �d Cx

Aq. block-structured 3.57 47.93 1.702
Nieuwstadt and Keller [53] 3.09 — 1.716

Table XV. Recirculation length, detachment angle and drag
coefficient at Re= 40.

Authors L/r �d Cx

Aq. block-structured 4.94 50.99 1.503
Dennis and Chang [52] 4.69 53.8 1.522
Nieuwstadt and Keller [53] 4.357 53.34 1.550
Coutanceau and Bouard [51] 4.26 53.5 —
Fornberg [54] 4.48 — 1.498
He and Doolen [55] 4.490 52.84 1.499
Prabhakar [57] 4.55 — 1.55

Figure 24 shows the block-structured mesh composition we used. It is based on the superposition
of three blocks: the first two are Cartesian blocks with a hole, the last one is a disk. Space step
size becomes increasingly thin. The total number of elements is 33 168. Around the cylinder of
diameter 1, there are 240 elements according to �, and space step size in the r direction is 0.25m.

5.3.2. Stationary flow 4<Re<49. As shown in Tables XII–XV, the recirculation length is generally
overestimated compared to other numerical results found in the literature. The error reaches 26%

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1239–1268
DOI: 10.1002/fld
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Figure 25. Recirculation length (left) and drag coefficient (right) versus the Reynolds number.

Figure 26. Streamlines of the flow around a cylinder at Re= 40.

Table XVI. Strouhal number at various Reynolds numbers.

Re Block-structured Williamson

80 0.158 0.155
100 0.170 0.166
120 0.180 0.175
140 0.185 0.182
160 0.192 0.188

with respect to Nieuwstadt and Keller [53] at Re= 10. Differences decrease with the increase of
the Reynolds number (around 10% at Re= 40). Nevertheless, our values are in the uncertainty area
of the experiment (see Figure 25 left). The same comments can be made regarding the detachment
angle. Results obtained on the drag coefficient (see Figure 25 right) are much closer to those found
in the literature. Figure 26 shows the mesh and the streamlines around the cylinder and through
the interfaces.
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Figure 27. Drag and lift coefficients at Re= 160.

Figure 28. Streamlines of the flow around a cylinder during a period at Re= 160.
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5.3.3. Unstationary flow 49<Re<190. As shown in Table XVI, results are very close to the
Williamson Strouhal law. The overestimation is around 3%. At Re= 160, Figures 27 and 28 show
the time variation of the lift and drag coefficients and the streamlines around the cylinder during
a period.

6. CONCLUSION

In the present work, we have proposed and validated a connecting technique for non-conforming and
overlapping block-structured meshes. It is non-iterative and based on an implicit non-conservative
interpolation. This is performed in the context of the augmented Lagrangian method and the
iterative Uzawa algorithm. The linear system of the Navier–Stokes equations is modified: lines
that correspond to the interface nodes link the blocks together. Thus, the discretization of the
equations and the connecting conditions are implicit.

With a series of test cases for which the analytical solution is known, we have demonstrated
that the spatial convergence order is 2. Numerical simulations of laminar and incompressible flows
show the feasibility and validity of the method.

Nevertheless, the interpolation used does not allow the incompressibility constraint to be fully
attained over the whole domain. The problem of mass conservation through the interface remains.
This problem is altogether logical because the interpolation acts as a Dirichlet condition on the
interfaces.

We have modified the vectorial projection method to ensure mass conservation locally to each
block. New conditions on the interfaces have been written that take into account the flow rate
difference at each interface between blocks. In particular cases, it could be possible to take into
account the flow rate difference between blocks or to bring each block flow rate to a reference
one (to the entrance flow rate for instance). In the future, it will be necessary to connect gradient-
type information between the blocks (normal constraint) to ensure a better conservation of the
momentum and the incompressible constraint. The main difficulty to be dealt with lies in the
implicit treatment of this new condition.
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SUMMARY

This paper deals with a method first introduced by Romé et al. in two articles. The authors reported that
their method was suitable to run the Navier–Stokes equations efficiently on non-matching and overlapping
block-structured meshes. However, there was a problem of mass conservation and a discontinuity of
pressure through the interfaces in some cases. In the present paper, an improvement of the method based
on a pressure correction scheme is proposed. With this improvement, the pressure is continuous through
the interfaces and the incompressibility constraint is ensured over the whole domain. Several numerical
tests were carried out to assess the proposed method. Copyright q 2009 John Wiley & Sons, Ltd.

Received 5 November 2008; Revised 13 February 2009; Accepted 13 February 2009

KEY WORDS: block-structured meshes; Navier–Stokes; non-conforming; non-matching; overlapping;
interpolation

1. INTRODUCTION

In computational fluid dynamics when flows are calculated for complex geometries, one can
either use a block-structured grid or an unstructured one. Unstructured grids allow very complex
geometries to be meshed leading to complex discretization schemes and solvers that require tables
of connectivity between nodes and indirect addressing. If the geometry is not too complicated,
it can be divided into a reasonable number of structured blocks. Lexical numbering facilitates
the discretization of the equations (specially if the grid remains orthogonal) and the use of many
solvers dedicated to the structured grids.
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Domain decomposition methods are well suited to these issues. They can be classified
according to several criteria [1]. For instance, the block-structured grids can be overlapping
or non-overlapping. Generally, each block is computed separately and provides the boundary
conditions for the neighbouring blocks. Historically, these methods have been introduced by
Schwarz [2]. The main drawback of the method is that overlapping is required for convergence.
An improvement consists in substituting overlapping by another boundary condition. In [3],
Lions proposed the use of a Robin boundary condition. Our strategy consists in working with
overlapping in order to deal with orthogonal grids. The main difficulty is to find a relevant
projection operator on the interfaces between sub-domains. Mortar element methods have been
proposed to solve this problem [4, 5]. Chimera methods represent another approach [6, 7]. These
methods are particularly used in aerodynamic simulations.

Non-matching meshes raise the classical question of interpolation. This difficulty becomes harder
when the interpolation has to be carried out under constraint. In the case of simulation of an incom-
pressible flow, the constraint ∇ ·u=0 must be verified. Generally, interpolation is conservative if
it is based on finite volume techniques [8, 9]. Fluxes through interfaces are calculated using local
balance with a neighbouring block or a projection. Recently, a mass-flux-based interpolation algo-
rithm was proposed by Tang et al. [10, 11]. Some authors who used non-conservative interpolation
have shown that mass conservation is directly linked to the order of the interpolation [12].

In this paper, we propose an implicit method to compute the incompressible Navier–Stokes
equations on block-structured meshes based on non-conservative interpolation. This study proposes
an improvement of the method first introduced in [13, 14]. Indeed, the authors previously met
problems to satisfy the incompressibility constraint on the interfaces between blocks leading in
some cases to a discontinuity of pressure. They used the augmented Lagrangian method [15]
for pressure–velocity coupling. In the present case, the method has been replaced by a pressure
correction scheme [16] to circumvent these drawbacks.

We first present the numerical context of the study by describing the models and numerical
methods of the CFD code Aquilon (Aq. in figures and tables). Then, we describe the novelties
of the method in comparison with the method first introduced in [13, 14]. Finally, numerical tests
were carried out to validate the method and clearly show the improvements.

2. NUMERICAL CONTEXT

2.1. Numerical methods

In this paper, the incompressible Navier–Stokes equations are considered:
Find the velocity u and the pressure p such that:

∇ ·u=0 in � (1)

�

(
�u
�t

+∇ ·(u⊗u)

)
=−∇ p+∇ ·�(∇u+∇ tu) in � (2)

u=0 on �� (3)

where � is the density of the fluid, � is the dynamic viscosity and �⊂R2 is a bounded open
domain with Lipschitzian border ��.
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The main difficulty in the resolution of the problem (1)–(3) consists in ensuring the incom-
pressibility constraint that couples the velocity and the pressure. In the previous study [14], the
augmented Lagrangian method [15] was dealt with. In the present study, we will focus on a
pressure correction scheme [16].

2.1.1. The pressure correction scheme. The pressure correction time integration scheme consists in
splitting the Navier–Stokes system into two stages, a velocity prediction and a pressure correction
[16]. The time interval [0,T ] is divided into N equidistant time steps of length �t=T/N . The
approximate velocity and pressure fields at time tn =n�t (n=0, . . . ,N ) are denoted un and pn ,
respectively. Assuming all quantities are known up to tn , the solution at tn+1 results from the
velocity prediction step:

Find un+1∗ such that:

�

(
un+1∗ −un

�t
+∇ ·(un+1∗ ⊗un)−un+1∗ ∇ ·un

)
=−∇ pn+∇ ·�(∇un+1∗ +∇ tun+1∗ ) in � (4)

un+1∗ =0 on �� (5)

followed by the pressure correction step:
Find un+1 and �n+1 such that:

�
un+1−un+1∗

�t
+∇�n+1=0 in � (6)

∇ ·un+1=0 in � (7)

un+1 ·n=0 on �� (8)

with:

�n+1= pn+1− pn+�∇ ·un+1∗ (9)

Considering � constant and taking the divergence of (6) gives:

��n+1= �

�t
∇ ·un+1∗ in � (10)

��

�n

n+1

=0 on �� (11)

Once �n+1 is computed, the divergence-free velocity and the pressure are obtained by:

un+1=un+1∗ − �t

�
∇�n+1 (12)

pn+1=�n+1+ pn−�∇ ·un+1∗ (13)

2.1.2. Spatial discretization. The spatial discretization is based on the finite volume method on
a velocity–pressure staggered grid of the Marker and Cells type [17]. Pressure unknowns are
associated with the cell vertices, whereas velocity components are face centred. A centred scheme
of order 2 is used in this study for the inertial and constraint terms.
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The multifrontal sparse direct solver MUMPS [18] is used to solve the linear systems stem-
ming from the velocity prediction and pressure correction steps. BiCGStab(2) coupled with ILUT
preconditioner was also successfully tested.

3. AN IMPLICIT METHOD FOR CONNECTING BLOCKS

In order to connect the sub-domain, the missing information is transferred from block to block.
Polynomial interpolations are built and integrated as special boundary conditions. The polynomial
coefficients of the interpolation are present in the linear system and couple the solution on each
block through the interface. The non-conservative interpolation of the variables at the interfaces
can be seen as a new implicit boundary condition used for the discretization of the equation at the
nodes strictly inside the different blocks.

3.1. Pressure correction step

Two blocks (a) and (b) are considered (see Figure 1). The pressure increment � defined on block
(b) is interpolated, which gives the new boundary conditions on block (a). Interpolation is based
on the construction of a polynomial basis of a given order. For instance, the interpolation of � at
point M0(x0, y0) belonging to block (a) is obtained from the values of � at points Mi (xi , yi ) on
block (b) by the relation:

�(a)(x0, y0)= fint(�
(b))=

N∑
i=1

Fi (x0, y0)�
(b)(xi , yi ) (14)

The interpolation must now be constructed locally to each node at the interface. The technique
consists in building a canonical basis of Q-type of order d , thanks to the neighbourhood of
M0(x0, y0). The number of nodes required depends on the order of the chosen polynomial. For
instance, for a Q(1) interpolation Figure 1 represents the interpolation of the pressure on node M0
belonging to the interface of block (a) obtained from the values of pressure on nodes M1,M2,M3
and M4 belonging to block (b).

M
0

1M
2M

4MM3

u

u u

v

1 u2

3

v1

v3

4

2

(a)

(b)

Figure 1. Interpolation of the pressure.
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In order to reduce the values of the coefficients of the polynomial, M0 is chosen as the centre
of the frame. A polynomial Q(d)

i built using the Mi nodes, 1�i�(d+1)2 is written:

Q(d)
i (x−x0, y− y0)=

d∑
m=0

d∑
n=0

amn i (x−x0)
m(y− y0)

n (15)

Q(d)
i has the following properties:

∀i, j 1�i, j�(d+1)2, Q(d)
i (x j −x0, y j − y0)=�i j (16)

Equation (15) associated with the property (16) can be seen as a line of the (d+1)2×(d+1)2

linear system A×B= I d with:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a001 · · · amn 1 · · · ad d 1

...
...

...

a00 i · · · amn i · · · ad d i

...
...

...

a00(d+1)2 · · · amn (d+1)2 · · · ad d (d+1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1−x0)
0(y1− y0)

0 · · · (xi −x0)
0(yi − y0)

0 · · · (x(d+1)2 −x0)
0(y(d+1)2 − y0)

0

...
...

...

(x1−x0)
m(y1− y0)

n · · · (xi −x0)
m(yi − y0)

n · · · (x(d+1)2 −x0)
m(y(d+1)2 − y0)

n

...
...

...

(x1−x0)
d(y1− y0)

d · · · (xi −x0)
d(yi − y0)

d · · · (x(d+1)2 −x0)
d(y(d+1)2 − y0)

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The inversion of this linear system (one for each node of the interface) is performed during the
preparation step of a simulation and provides the values of the matrix A. The value of the pressure
� at node M0(x0, y0) reads:

�(a)(x0, y0)=
(d+1)2∑
i=1

Q(d)
i (x0, y0)�

(b)(xi , yi ) (17)

The Q(d)
i can be placed in the linear system of the pressure correction step (see Figure 2).

Thus, on a matrix line corresponding to a node at the interface, non-zero elements are the diagonal
term and the elements with a column number corresponding to unknowns used to interpolate the
pressure.

With this method, the pressure is obviously continuous at the interfaces (up to the order of the
polynomial interpolation), but the divergence of the velocity is not null at the interfaces since the
velocities u2, u4, v1, v2 and v3 (see Figure 1) are not corrected by the pressure correction. Indeed,
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Figure 2. Representation of the pressure correction matrix on 2 blocks.

1

2

3

(a)

(b)

Figure 3. New stencil to ensure incompressibility constraint.

the pressure gradient cannot be well computed on these nodes and introduces an error in Equation
(12). In order to circumvent this problem, we propose to increase the overlap between blocks by
adding a row of ghost nodes (nodes �1, �2 and �3 in Figure 3). The pressure is now connected
from one block to another, thanks to these ghost nodes. The pressure gradient can be computed
precisely on velocity nodes at the interfaces. This addition satisfies incompressibility constraint.
Nonetheless, the pressure is no longer continuous at the interface. This is probably due to the error
in the interpolation of �n+1 on the ghost nodes that accumulates on the pressure nodes pn+1 at
the interface. In order to overcome this problem, a new pressure correction scheme is proposed.
The velocity prediction step does not change, but the pressure correction step is modified and a
third interpolation step is added. The new scheme reads as follows:

• Velocity prediction step: Find un+1∗ such that

�

(
un+1∗ −un

�t
+∇ ·(un+1∗ ⊗un)−un+1∗ ∇ ·un

)
=−∇ pn+∇ ·�(∇un+1∗ +∇ tun+1∗ ) in � (18)

un+1∗ =0 on �� (19)
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• Pressure correction step: Find un+1 and �n+1 such that

�
un+1−un+1∗

�t
+∇�n+1=0 in � (20)

∇ ·un+1=0 in � (21)

un+1 ·n=0 on �� (22)

with:

�n+1= p̃n+1− pn+�∇ ·un+1∗ (23)

• Interpolation step: Compute pn+1 such that

pn+1= p̃n+1 in �/� (24)

pn+1= fint( p̃
n+1) on � (25)

where � is the whole interface between blocks and fint represents the interpolation function
on �.

This new scheme ensures continuity of the pressure through the interfaces and still respects the
incompressibility constraint.

3.2. Velocity prediction step

Interpolation of the velocity is more difficult since it is a vector field. If the blocks do not have
the same orientation, both velocity components are needed to compute a single component of the
velocity field on the interface. For a precise description of the method, particularly the interpolation
technique on cartesian blocks with any orientation or on curvilinear blocks, the reader is referred to
[14]. Previously, the interpolation of the normal component of the velocity field at the interface was
performed on pressure nodes, whereas the tangential component was interpolated at the velocity
nodes. In the present case, both components are interpolated at the velocity nodes (see Figure 4
in case of a Q(1) interpolation).

(a)

(b)

Figure 4. New interpolation of the velocity vector on a staggered grid.
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In the next section, many computations have been carried out to assess the proposed method
and to exhibit its improvements in comparison with [14]. Q(2) polynomial interpolation has been
systematically used. This leads to a 5-point stencil for pressure and to a 24-point stencil for velocity.

4. NUMERICAL RESULTS

In this section, a series of numerical experiments was performed to evaluate the accuracy and the
efficiency of the method. The test cases considered include steady and unsteady flows. First, we
consider a Poiseuille flow and the Green–Taylor vortex example to verify the spatial and time order
of convergence of the method. Then, the lid-driven cavity is studied to assess the improvement
of the method in comparison with [14]. Finally, flows past a two-dimensional obstacle and past a
triangular cylinder are considered.

4.1. Poiseuille flow

Simulations were carried out in several non-conforming block-structured meshes represented in
Figure 5. The Reynolds number is Re=100. At the inlet, we impose a parabolic profile for the axial
velocity u and zero for the velocity v, whereas at the outlet, a Neumann condition is imposed on
both velocity components. Since the analytical solution is order 2, the errors are close to computer
accuracy if a Q(2) interpolation is used.

4.2. Green–Taylor vortex

The main point of interest with this flow is that, unlike in Poiseuille flow, the inertial term is not
null. The Green–Taylor vortex is modified to obtain a stationary solution not identically null [19].
In [14], the authors could not validate the pressure because the divergence of the velocity was not
null and accumulated in the pressure. We will see that the new scheme proposed clearly improves
these inconveniences.

The momentum equations are enriched by the following source term:

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �2�

2H2
cos

( � x

2H

)
sin

( � y

2H

)

− �2�

2H2
sin

( � x

2H

)
cos

( � y

2H

)

16 2

82

82
8216 2 16 2 16 2

18
2

18
2

32x8 35x9

80x8

30x8

30x8
30x25

Case 1 Case 2 Case 3 Case 4 Case 5

Figure 5. Representation of the different blocks for Poiseuille flow study (number of elements is indicated).
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Figure 6. Block-structured mesh for the Green–Taylor flow study.

The solution is:

u(x, y, t)=−cos
( �x

2H

)
sin

( �y

2H

)
(1−e−�2�t/2H2

)

v(x, y, t)=+sin
( �x

2H

)
cos

( �y

2H

)
(1−e−�2�t/2H2

)

p(x, y, t)=−�

2

(
cos2

( �x

2H

)
+cos2

( �y

2H

))
(1−2e−�2�t/2H2 +e−�2�t/H2

)

The boundary conditions are obtained directly from the analytical solution and are modified at
each time step. The test case was run with two non-conforming structured blocks (see Figure 6).

A time convergence study was carried out. Figure 7 represents the errors at time T =1s as a
function of the time step �t . We observe a slope in log/log scale equal to 1 that is coherent with
the order of the scheme used (Euler time scheme and linearization at order 1).

4.3. Lid-driven cavity

The lid-driven cavity problem has long been used as a test or validation case for new codes or
new methods. The standard case is fluid contained in a square domain with three wall sides and
one moving side (with velocity tangential to the side). In the present paper, we refer to the works
of Botella and Peyret [20]. For this computation, a Reynolds number of 1000 is used.

The mesh is divided into five non-conforming structured blocks: the first block occupies the
main part of the domain; the lower (upper) blocks have step spaces a third (half) the size of
the main block (see Figure 8). The mesh is refined in the corners to have a better description of the
flow. The refinement is clearly a strong point of the multiblock strategy. The number of elements
is 121 344.
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Figure 7. L2(�) error norm as a function of the time step for the Green–Taylor flow study.
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Figure 8. Streamlines on an block-structured mesh for the lid-driven cavity.

The main results found in the literature are given on the intensity and position of the vortices.
The results are obtained with convergence criteria on stationarity below 10−12. Our results are
compared with the results obtained in [14] to exhibit the improvements of the method.

4.3.1. Position and intensity of the vortex. Tables I–III that represent the position of the vortices
and the intensity of the streamlines show the good behaviour of the method in comparison with
the results of the literature. We can observe in the two first lines of the table that both methods
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Table I. Intensity and position (x, y) of the main vortex.

Reference Mesh size Maximum streamline x y

Present 121344�3482 0.11885 0.4687 0.5664
Romé et al. [14] 121344�3482 0.11877 0.4687 0.5664
Botella and Peyret [20] 1282 0.11894 0.4692 0.5652

Table II. Intensity and position (x, y) of the left secondary vortex.

Reference Mesh size Minimum streamline x y

Present 121344�3482 −1.7285×10−3 0.1354 0.1119
Romé et al. [14] 121344�3482 −1.7285×10−3 0.1354 0.1120
Botella and Peyret [20] 1282 −1.7297×10−3 0.1360 0.1118

Table III. Intensity and position (x, y) of the left ternary vortex.

Reference Mesh size Maximum streamline x y

Present 121344�3482 4.6742×10−8 0.00757 0.00755
Romé et al. [14] 121344�3482 4.7314×10−8 0.00781 0.00781
Botella and Peyret [20] 1282 5.0399×10−8 0.00768 0.00765

give very close results. The utility of the refinement is clear since it provides an amplitude of 10−8

for the right ternary vortex.

4.3.2. Velocity and pressure profiles. In Figure 9, the velocity profiles present a good accordance
with those obtained by Botella and Peyret [20] and from a monoblock mesh with a Chebyshev
polynomial step size variation. In [14], the authors observed that the pressure was discontinuous
on the interface of the upper blocks because the incompressibility constraint did not equal zero.
Figure 10 clearly shows the improvement of the method since the pressure is now continuous.

4.4. Laminar flow over a two-dimensional obstacle

The experimental configuration is presented in Figure 11. This flow was experimentally studied
by Carvalho et al. [21]. The Reynolds number based on the height of the obstacle and mean
axial velocity is 82.5. A recirculation appears behind the obstacle and when the Reynolds number
increases, a second recirculation appears on the upper wall (see Figure 12). The boundary conditions
at the inlet are prescribed as a parabolic profile for the axial velocity u and zero for the velocity v.
At the outlet, a Neumann condition is imposed on both velocity components. In the present study,
a mesh composed of three structured blocks is considered. Even if this configuration can be treated
with an uniformly refined grid, we have chosen this test case to prove the robustness of our
approach by putting the interface between blocks in a strong shear zone. Indeed, for complex
flows and geometries, the fact that vortices cross the interface is very frequent. The grid is fine
around the obstacle and stretched near the inlet and the outlet (see Figure 12). The total number
of elements is 131 040.
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Figure 11. Global features of the flow over a two-dimensional obstacle.

Figure 13 presents the axial velocity u at different locations x/S measured [21] and computed.
Table IV compares the reattachment lengths. Satisfactory results can be observed in comparison
with the experimental data except for the reattachment length x2/S. Several authors [22–24] have
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Figure 12. Streamlines on a block-structured mesh for the flow over a two-dimensional obstacle.
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Figure 13. Comparison between calculation (—) and experimental data [21] (◦)
for flow over the fence (Re=82.5).

Table IV. Comparison of the reattachment lengths.

x1/S x2/S x3/S

Present 4.96 4.12 8.38
Aq. monoblock 1800×200 4.99 4.01 9.19
Carvalho et al. [21] 5.00 2.01 10.4

considered this flow to validate their scheme but they have only compared the axial velocity u at
different locations x/S and none of them has measured the recirculation lengths. Consequently, we
cannot really verify if the difference on x2/S comes from our computation or from the measurement
in [21]. At least, multiblock results are coherent (see Table IV) with those obtained on a fine
monoblock grid, solved with a different velocity–pressure coupling (augmented lagrangian).

4.5. Flow past a triangular cylinder

Flow past a equilateral triangular cylinder was studied. The Reynolds number is based on the side
of the triangular cylinder (h=1) and the axial velocity inlet (u=0.5). We focussed on two flow
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ranges according to the value of the Reynolds number in relation to its critical value Rec:

• Re<Rec: the flow is stationary. Two steady symmetrical vortices can be observed behind the
cylinder: their size increases with increasing Re.

• Re�Rec: the flow becomes unsteady and periodic. Two vortices form at the rear-end vertices
of the cylinder and are shed alternately.

Jackson [25] studied the onset of vortex shedding in flow past variously shaped bodies. For an
isosceles triangle with base 1 and height 0.8, he reported a critical Reynolds as 34.318 and a
corresponding Strouhal number as 0.13554. Zielinska and Wesfreid [26] computed flow past an
equilateral triangle with a blockage ratio equal to 1

15 and found a critical Reynolds number of 38.3.
De and Dalal [27] carried out a similar study and calculated a critical Reynolds number of 39.9 for
a blockage ratio of 1

20 . This case was chosen here because most studies have dealt with flow past
circular or square cylinders and laminar flow past a triangular cylinder has not been intensively
studied so far. Moreover, this configuration is well adapted to validate and illustrate the utility of
block-structured meshes.

4.5.1. Parameters of the case test. Figure 14 represents the block-structured mesh used in this
case. The grid is fine around the cylinder and space step size increases in front of and behind
it. The number of grid nodes distributed over a side of the cylinder is 100. The total number of
elements is 137 980. At the inlet, a flat profile is imposed for the axial velocity u and zero for the
velocity v. At the outlet, a Neumann condition is imposed on both velocity components. We will
compare the results with [27].

4.5.2. Steady flow. The streamlines in the vicinity of the cylinder for two Reynolds numbers are
shown in Figure 15.

To assess the method, the recirculation length (L r) defined by the reattachment of the fluid was
measured and a linear relationship between L r and Re obtained in [27] (see Figure 16). The results
seem to be in good accordance with those presented in [27].
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Figure 14. Block-structured mesh for flow past a triangular cylinder.
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Figure 15. Steady-state streamlines Re=20 (left), Re=35 (right).
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Figure 16. L r−Re relationship.

Table V. Comparison of the results for Re=100.

CD CDp CLrms St

Present 1.6698 1.3579 0.2626 0.1960
De and Dalal [27] 1.7549 1.2986 0.2974 0.1962

4.5.3. Unsteady and periodic flow. The flow becomes unsteady and periodic for Re�40. For
Re=100, the time-average drag coefficient (CD), time-average pressure drag coefficient (CDp ),
rms of the lift coefficient (CLrms) and the Strouhal number (St) are compared with [27]. We can
see in Table V difference below 5% except for the CLrms where the gap is 11%. It can be explained

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:784–801
DOI: 10.1002/fld



BLOCK-STRUCTURED GRIDS 799

Figure 17. Streamlines for the flow past a triangular cylinder during a period at Re=100
(it reads from left to right and vertically).

by the difference of the mesh size and the numerical method used by the authors. We can notice
that ensuring the continuity of the pressure between blocks allowed us to compute the drag and
lift coefficients even if the contours of the geometry are described by several blocks (contrary to
the previous method where jumps of pressure between blocks were observed).

Finally, Figure 17 shows the streamlines around the triangular cylinder during a period at
Re=100 giving prominence to the periodicity of the flow.

5. CONCLUSION

In this paper, we have proposed an improvement of a method first introduced by Romé et al.
in [14]. Both methods deal with a domain decomposition technique for non-conforming and
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overlapping block-structured meshes. They are non-iterative and based on a implicit non-
conservative interpolation of the variables at the interfaces. The linear systems are modified in
comparison with those obtained on a monoblock mesh since lines are added to take into account
the connectivity between blocks.

The main difference between the two methods is the velocity–pressure coupling. In [14], the
authors dealt with this coupling by an augmented Lagrangian method. In some cases, the divergence
of the velocity at the interfaces between blocks was not null leading to a discontinuity for the
pressure. In the present study, velocity and pressure were coupled by a pressure correction scheme.
The divergence of velocity is now null over the whole domain and the discontinuity of pressure has
disappeared. In many cases, the gradient of the pressure is sufficient to carry on computations but
an accurate pressure is needed to compute physical parameters such as drag and lift coefficients
for example. Consequently, the proposal method improves this point. Several numerical tests were
carried out in order to validate the method. They clearly showed its feasibility and accuracy.
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We present an analytical study of discretization stencils for the Poisson problem and 
the incompressible Navier–Stokes problem when used with some direct forcing immersed 
boundary methods. This study uses, but is not limited to, second-order discretization and 
Ghost-Cell Finite-Difference methods. We show that the stencil size increases with the 
aspect ratio of rectangular cells, which is undesirable as it breaks assumptions of some 
linear system solvers. To circumvent this drawback, a modification of the Ghost-Cell Finite-
Difference methods is proposed to reduce the size of the discretization stencil to the one 
observed for square cells, i.e. with an aspect ratio equal to one. Numerical results validate 
this proposed method in terms of accuracy and convergence, for the Poisson problem 
and both Dirichlet and Neumann boundary conditions. An improvement on error levels 
is also observed. In addition, we show that the application of the chosen Ghost-Cell Finite-
Difference methods to the Navier–Stokes problem, discretized by a pressure-correction 
method, requires an additional interpolation step. This extra step is implemented and 
validated through well known test cases of the Navier–Stokes equations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary method has been proven a successful treatment of complex boundaries in numerical sim-
ulations. The difficult generation of body-fitted grids is replaced by a modification of the governing equations near the 
boundaries, thus benefits of structured grids can be exploited. In addition, the immersed boundary method is particularly 
attractive when dealing with moving boundaries as it avoids re-meshing. Many different variants have been developed 
since the original immersed boundary method [1] as they explored coupling with different physical problems, different 
regimes, etc. Now the best approach to choose depends on physics constraints one wants to model. The review of Mittal 
and Iaccarino [2] explains this in details. The Direct Forcing approach, adopted in this article, first discretizes governing 
equations into a linear system; then applies boundary conditions near immersed boundaries to complete the linear sys-
tem. This approach is similar to ordinary boundary conditions, but the non-Cartesian immersed boundaries leads to more 
complex interpolations. Both finite-difference discretization and finite-volume discretization can be used to apply immersed 
boundary conditions. This article focuses on specific aspects of the Ghost-Cell Finite-Differences approach, in the versions 
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Fig. 1. Definitions and notations of the computational domain, the immersed boundary, the mesh, and node types.

proposed by Mittal et al. [3] and Coco and Russo [4], and applies them to the Poisson and Navier–Stokes problem, though 
this approach can be used to any boundary value problem.

Some linear system solvers constrain the matrix profile, i.e. cells allowed to be nonzero, to take advantage of properties 
that allow to achieve the highest performance in large parallel computations. For instance, geometric multi-grid algorithms 
SMG [5,6] and PFMG [7,8] of the hypre library can be used only with band matrices with 9/27 points stencils in 2D/3D 
for SMG and PFMG. More generic solvers and preconditioners such as the algebraic BoomerAMG of the hypre library are 
less efficient (see [9–11]) even if they are competitive. In addition, band matrices requires less memory than more generic 
sparse matrix format, such as Compressed Row Storage, because their topology do not need to be stored for each line of the 
matrix. The Ghost-Cell Finite-Differences methods proposed by Mittal et al. [3] and Coco and Russo [4] do not fit in band 
matrices generated by the discretization of the equations, whose stencil is broken for rectangular cells. These methods are 
based on the “closest point of the boundary” (as explained in Sec. 2.2) which does not take into account the properties of 
the numerical grid. This article proposes a modification of these methods to adapt them on band matrices in the case of 
rectangular cells. This article is organized as follows: the two Ghost-Cell Finite-Differences methods [3,4] are presented in 
Sect. 2 through the Poisson problem. Their impact on the discretization stencil is studied in Sect. 3, and the Ghost Node 
Shifting Method is defined in Sect. 4. Numerical simulations validate the proposed method in Sect. 5 for the Poisson problem 
with Dirichlet and Neumann boundary conditions. Finally, the Ghost-Cell Finite-Differences methods are introduced into the 
incompressible Navier–Stokes equations in Sect. 6 and some validations are presented in Sect. 7.

2. Immersed boundary methods with the Poisson problem

This section presents the Finite-Differences Ghost-Fluid immersed boundary methods applied to the Poisson problem, as 
found in the literature. For the sake of simplicity, methods are described in the 2-dimensional real space.

2.1. Problem description and discretization

The computational domain � is a rectangle of the 2-dimensional real space. It is split into two sub-domains by the 
immersed boundary �: one is the inner part �i , while the other is the outer part �o . The boundary � is oriented by a unit 
vector n from the outer domain to the inner domain. The domain boundary ∂� decomposes in four line segments ∂�b , ∂�r , 
∂�t , ∂�l , where the letters b, r, t , l stand for bottom, right, top, left, respectively. These definitions are illustrated in Fig. 1a.

Poisson problem. We consider u : �i → R, a scalar field restricted to the inner domain, solution of the Poisson equation 
with a known source field f : �i → R:

�u = f , in �i , (1a)

u = D , on ∂�D ∪ �D , (1b)

∂nu = N , on ∂�N ∪ �N . (1c)

Here boundaries have been split into a “Dirichlet” part ∂�D ∪ �D and a “Neumann” part ∂�N ∪ �N ; boundary conditions 
D : � → R and N : � → R are known.
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Numerical discretization. The computational domain is partitioned into cells with a Cartesian arrangement of size m × n. 
The cell boundaries do not conform with �. The partitioning is uniform, i.e. the cell sizes hx , hy do not depend on the cell 
index; however, the cells can be either square: hx = hy , or rectangular: hx �= hy . A row of cells is added across each domain 
boundary to handle the domain boundary conditions; hence the total grid size is (m +2) × (n +2). Finally, each cell of index 
(i, j) is associated to a cell node Xi, j , with 0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1. Fig. 1b shows the discretization of �.

We assign types to nodes to know on which side of the immersed boundary the node is, and to apply different equations 
on them. The cell type of the cell node Xi, j is

1. if Xi, j ∈ �i , then Xi, j is an inner node;

2. else, if {Xi−1, j,Xi+1, j,Xi, j−1,Xi, j+1} ∩ �i �= ∅, then Xi, j is a ghost node;

3. else, Xi, j is an outer node.

(2)

Fig. 1b also illustrates how node types are defined. As explained below, the ghost node in Eq. (2) represents nodes that will 
need a special treatment to close the linear system. By extension: if Xi, j is an inner node (respectively, a ghost node, an 
outer node), then the cell at (i, j) is called an inner cell (respectively, a ghost cell, an outer cell). Finally, we define the set of 
inner cell indices Ci , the set of ghost cell indices C g , and the set of outer cell indices Co , accordingly.

Equation (1a) discretizes at each inner node using standard, second-order finite differences

Ui−1, j − Ui, j

h2
x

+ Ui+1, j − Ui, j

h2
x

+ Ui, j−1 − Ui, j

h2
y

+ Ui, j+1 − Ui, j

h2
y

= Fi, j + O(h2) , ∀(i, j) ∈ Ci , (3)

where h = max{hx, hy}; F and U are discrete fields of size (m +2) × (n +2) such as Fi, j = f (Xi, j) and Ui, j = u(Xi, j) at inner 
cells. Note that we choose Ui, j to be the field value of the exact solution at Xi, j of the continuous equation Eq. (1); the 
truncation term O(h2) in Eq. (3) accounts for the difference between finite differences and exact derivatives. We also write 
Eq. (3) in the matrix form (LU )i, j = Fi, j + O(h2), ∀(i, j) ∈ Ci . Equation (3) is not closed as there are some Ui−1, j , Ui+1, j , 
Ui, j−1, or Ui, j+1 that do not correspond to inner nodes; these nodes correspond exactly to the ghost nodes, for which a 
value must be defined. For ghost node values behind the domain boundaries, we use standard boundary conditions, which 
gives on the left boundary ∂�l

U0, j + U1, j

2
= Dl(X 1

2 , j) + O(h2) , ∀ j ∈ �1,n� ∩ ∂�D , (4a)

U1, j − U0, j

h
= Nl(X 1

2 , j) + O(h2) , ∀ j ∈ �1,n� ∩ ∂�N . (4b)

For ghost node values behind the immersed boundary, similar boundary conditions can be derived from Eq. (1b)–(1c) that 
also take into account the geometry of the immersed boundary; it is detailed in Sect. 2.2. Boundary conditions of all 
boundaries can be written in matrix form (EU )i, j = Bi, j + Ri, j, ∀(i, j) ∈ C g , where B contains boundary condition values, 
such as Dl(X 1

2 , j) in Eq. (4a). The truncation term R will be refined in Sect. 2.2. Finally, both the discretized Poisson equation 
Eq. (3) and boundary conditions are assembled into the closed linear system

(
(L + E)U

)
i, j = Fi, j + Bi, j + O(h2) + Ri, j , ∀(i, j) ∈ Cig , (5)

where Cig = Ci ∪ C g . To write Eq. (5), we consider that (LU )i, j = Fi, j = 0 over C g and (EU )i, j = Bi, j = 0 over Ci . This 
methodology can be applied to other problems by adding the part EU = B + R to the considered equation. An example is 
given in Eq. (52a) of this article with the momentum equation.

Numerical simulations can be performed by dropping the truncation terms

(
(L + E)Û

)
i, j = Fi, j + Bi, j , ∀(i, j) ∈ Cig , (6)

where Û is the numerical solution. The discretization of the Poisson equation prevents ourselves from observing better than 
second-order limiting behavior, although this limitation is not due a priori to the immersed boundary method.

Implemented linear system arrays still have placeholders for outer node values due to the structured formulation, but 
their values should have no influence on the other node values. It is useful to set outer node values to a large value by 
setting both the diagonal and the right-hand side to, say, 1010, as it helps bug detection in the implementation.

The numerical simulations presented in this document resort on the direct linear system solver mumps [12,13] or the 
iterative linear system solvers of hypre [10,14]. In the later case, we used GMRES as solver and SMG or BoomerAMG as 
preconditioner, unless specified otherwise.
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Fig. 2. Sketch defining the boundary point xB and the probe point xP with respect to the ghost node Xi, j . The boundary point is the closest point 
of � with respect to Xi, j , thus [Xi, j, xB ] is aligned with n. As Xk,l is an inner node, xC is always defined. The axis at the bottom illustrates that 
|xB − Xi, j | ≤ |xC − Xi, j | < |Xk,l − Xi, j |.

2.2. Immersed boundary conditions

In this section, we present two different definitions of immersed boundary conditions that were introduced by Mittal 
et al. [3], the linear method in this paper, and by Coco and Russo [4], the direct method.

Let us consider a ghost node Xi, j next to some part of the immersed boundary �. We define the boundary point xB as 
the closest point of � with respect to Xi, j ; the scalar d is the distance between xB and the ghost node, and the unit vector 
n defined in Sect. 2.1 happens to be the direction of xB from the ghost node. We also define the probe point xP as the 
symmetric of Xi, j with respect to xB . Fig. 2 illustrates these definitions.

The method used to obtain xB , xP , d, and n depends on how the immersed boundary is defined (by a parametrization, 
a level-set field, etc.). Immersed boundaries used in the numerical simulations presented in this document uses exact 
parametrizations or piecewise linear curves such as the variables can be evaluated up to machine epsilon.

2.2.1. Linear method [3]
The linear method builds boundary conditions using finite-differences along the linear segment [Xi, j, xP ]:

Ui, j + u P

2
= uB + O(d2) , (7a)

u P − Ui, j

2d
= ∂nuB + O(d2) , (7b)

where u P = u(xP ), uB = u(xB), and ∂nuB = ∂nu(xB) are the exact field values and derivatives at the corresponding points. 
The right-hand side term O(d2) is equivalent to O(h2). Indeed, according to the definition of a ghost node Eq. (2) there 
exists an adjacent inner node Xk,l , so there is an intersection point xC between � and the line segment [Xi, j, Xk,l]; see 
Fig. 2. And, as xB is the closest point of � from Xi, j ,

d = ‖xB − Xi, j‖2 ≤ ‖xC − Xi, j‖2 < h. (8)

The left-hand side Eq. (7) must use only (cell) node values to fit in the linear system Eq. (5), so the value u P is expanded 
as a p-th order interpolation of surrounding node values:

u P =
∑

(k,l)∈I P

ρk,lUk,l + O(hp) , (9)

where interpolation coefficients ρk,l and the set of interpolation indices I P will be defined in Sect. 2.3. The boundary conditions 
Eq. (1b)–(1c) can thus be discretized as
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1
2 Ui, j +

∑
(k,l)∈I P

1
2ρk,lUk,l = D(xB) + O(h2) + O(hp) , ∀(i, j) ∈ C g ∩ ∂�D , (10a)

∑
(k,l)∈I P

1
2d ρk,lUk,l − 1

2d Ui, j = N(xB) + O(h2) + O(hp−1) , ∀(i, j) ∈ C g ∩ ∂�N . (10b)

A numerical approximation of the Poisson problem can be built using the linear method Eq. (10) to discretize the Dirichlet 
and Neumann boundary conditions. A second-order limiting behavior is obtained if second-order interpolations are used with 
Dirichlet boundary conditions, and if third-order interpolations are used with Neumann boundary conditions.

2.2.2. Direct method [4]
In this method, the probe point xP is not used and the field value at the boundary point uB is directly expanded as a 

p-th order interpolation, which gives for the Dirichlet boundary condition∑
(k,l)∈I B

βk,lUk,l = uB + O(hp) , (11)

where interpolation coefficients βk,l and the set of interpolation indices I B will also be defined in Sect. 2.3. For the Neumann 
boundary condition, the field gradient can be obtained through algebraic differentiation of the interpolation polynomial:

∇uB =
∑

(k,l)∈I B

(∂xβk,l, ∂yβk,l)Uk,l + O(hp−1) , (12)

where ∂xβk,l and ∂yβk,l are the interpolation coefficients of the polynomial gradient. Using ∂nuB = ∇uB ·n, the boundary 
conditions Eq. (1b)–(1c) can thus be discretized as∑

(k,l)∈I B

βk,lUk,l = D(xB) + O(hp) , ∀(i, j) ∈ C g ∩ ∂�D , (13a)

∑
(k,l)∈I B

(∂xβk,lnx + ∂yβk,lny)Uk,l = N(xB) + O(hp−1) . ∀(i, j) ∈ C g ∩ ∂�N . (13b)

A numerical approximation of the Poisson problem can be built using the direct method Eq. (13) to discretize the Dirichlet 
and Neumann boundary conditions. A second-order limiting behavior is obtained if second-order interpolation are used with 
Dirichlet boundary conditions, and if third-order interpolation are used with Neumann boundary conditions.

2.3. Interpolation

Interpolations introduced in Eq. (9), (11) are the last part to define the immersed boundary methods. Any interpolation 
method can be used as long as two constraints are met:

1. the set of interpolation nodes must not include any outer node,

2. Equation (9), (11) must include the ghost node value Ui, j .
(14)

The first constraint ensures that the linear system Eq. (5) is closed because no values are defined on outer nodes. The 
second constraint ensures that Ui, j is defined by Eq. (9), (11). We will see later that this is not always the case for the 
direct method on rectangular cells.

This article uses Lagrange polynomials over the Cartesian set of nodes { Xk,l = (Xk, Yl)
ᵀ | (k, l) ∈ Iχ }, with χ = P for the 

probe point (Eq. (9)) and χ = B for the boundary point Eq. (11). The set of interpolation indices Iχ is defined by the indices 
of the two opposite corners of the Cartesian set. The first index (ic, jc) corresponds to the node surrounding xχ in the 
opposite direction given by n, and the second index is p − 1 nodes away from (ic, jc) in the direction given by n. Using n
extends Xχ towards the inner domain to conform to the first constraint. The formal definition of Iχ is as follows, and Fig. 3
shows examples:

• when n = (nx, ny)
ᵀ is oriented to the top right quadrant, i.e. nx ≥ 0 and ny ≥ 0, then

ic = max{k | Xk < xχ } , jc = max{ l | Yl < yχ } , Iχ = �ic, ic + p − 1� × � jc, jc + p − 1� ; (15a)

• when n is oriented to the top left quadrant, i.e. nx < 0 and ny ≥ 0, then

ic = min{k | xχ < Xk} , jc = max{ l | Yl < yχ } , Iχ = �ic − p + 1, ic � × � jc, jc + p − 1� ; (15b)

• when n is oriented to the bottom left quadrant, i.e. nx < 0 and ny < 0, then

ic = min{k | xχ < Xk} , jc = min{ l | yχ < Yl} , Iχ = �ic − p + 1, ic � × � jc + p − 1, jc � ; (15c)
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Fig. 3. Examples of sets of interpolation nodes for the grid sketched in Fig. 1b. At four ghost nodes, the boundary or probe point is shown, and the 
corresponding set of interpolation nodes is shown with a dot-filled rectangle.

Fig. 4. Example of failing interpolation regions for both the linear and direct methods. Notice that this can happen only if the immersed boundary is curved 
towards the inner domain over a region of two cells width, i.e. the boundary is hollow.

• and when n is oriented to the bottom right quadrant, i.e. nx ≥ 0 and ny < 0, then

ic = max{k | Xk < xχ } , jc = min{ l | yχ < Yl} , Iχ = �ic, ic + p − 1� × � jc + p − 1, jc � . (15d)

This definition and Fig. 3 show that the region delimited by Iχ always contains xχ , hence we always have interpolation and 
never extrapolation. Extending Iχ towards the direction given by n avoids Iχ to contain outer node indices. It is authorized 
to have other ghost nodes indices in Iχ as their values are defined by the corresponding immersed boundary condition. 
This results in couplings between the immersed boundary conditions that will be solved by the linear system Eq. (5).

However, even though Eq. (15) is designed to avoid outer nodes, one can still find a configuration where Iχ contains 
some outer nodes; see Fig. 4 for examples. This occurs near parts of the immersed boundary that are hollow, i.e. � is curved 
towards the inner domain, over a range of two cells width; this issue is called the hollow case problem. Several solutions 
exist in the literature: Coco and Russo [4] stretch the discretization stencil to fit into the local inner domain and to reach 
enough inner nodes for the desired accuracy; Mousel [15] takes all nodes in a broader region in which there are more than 
enough inner nodes, and uses a least-squares algorithm to determine interpolation coefficients. Using any of these methods 
increases the size of the discretization stencil as they use inner node values that are farther away from the ghost node. We 
do not use these methods in this article as we aim to keep the size of the discretization stencil tight. Instead, we resort 
on increasing the grid resolution as, for continuously differentiable immersed boundaries, the curvature with respect to the 
grid resolution decreases.

The second constraint is always met for the linear method as Ui, j is directly present in the expression Eq. (10). This 
is not the case for the direct method Eq. (13), as Ui, j is present through the interpolation only, which may not contain 
(i, j). Hopefully the ghost node correspond to the first corner node of I B on square cells: |xB − Xi | < h = |Xi+1 − Xi | and 
|yB − Y j | < h = |Y j+1 − Y j|, so we have (i, j) = (ic, jc), which ensures that the direct method always involves the ghost cell 
value. This is not true anymore for rectangular cells, see examples on Fig. 6 and Fig. 7 below.

3. Analysis of the discretization stencil

This section analyzes the discretization stencil of the immersed boundary method introduced in Sect. 2 in the general 
case of rectangular cells.
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Fig. 5. Domains of stencil sizes 0, 1, 2 around Xi, j . The domain of stencil size 0 is reduced to a single point {Xi, j}.

3.1. Stencil size measurement

The matrix of the linear system that solves the Poisson problem with immersed boundaries Eq. (6) expands

(LU )i, j =
∑

(k,l)∈Cig

Lk,l
i, j Uk,l , ∀(i, j) ∈ Cig , (16)

where Lk,l
i, j are the scalar coefficients obtained from the discretization of the Poisson equation Eq. (3). Note that this expan-

sion also applies for boundary conditions Eq. (10) or Eq. (13), i.e. over C g , defining the scalar coefficients Ek,L
i, j . For an easier 

reading, the following does not write down expressions for E . The stencil of Eq. (16) is the set of indices (k − i, l − j) whose 
coefficient Lk,l

i, j is not zero. The stencil size ci, j of Eq. (16) is

ci, j = max
{ |k − i|, |l − j| | ∀(k, l) ∈ Cig, Lk,l

i, j �= 0
}
, ∀(i, j) ∈ Cig . (17)

The expression “compact stencil” used in the literature means c = 1, and “non-compact stencil” means c > 1. From a metric 
perspective, the stencil size can be obtained with the stencil norm, defined as

‖x‖c = max

{ |x|
hx

,
|y|
hy

}
, (18)

where x = (x, y)ᵀ ∈ �. The proof that x �→ ‖x‖c being a norm comes easily with the equivalence property

1

h
‖x‖∞ ≤ ‖x‖c ≤ 1

μ
‖x‖∞ , (19)

where h = max{hx, hy} and μ = min{hx, hy}. Noticing the equalities Xk − Xi = hx(k − i) and Yl − Y j = hy(l − j), the stencil 
size can be equivalently defined as

ci, j = max
{‖Xk,l − Xi, j‖c | ∀(k, l) ∈ Cig, Lk,l

i, j �= 0
}
, ∀(i, j) ∈ Cig , (20)

that is the “grid” distance of the farthest node from Xi, j with Lk,l
i, j �= 0. The region 

{
x | ‖x − Xi, j‖c ≤ ci, j

}
is the domain of 

stencil size ci, j . Fig. 5 presents examples of such domains.

3.2. Stencil size for the Poisson problem

Let us review the stencil size for equations associated with each node types: at the inner nodes, the stencil size for 
the five-point stencil of the classical discretization of the Poisson equation Eq. (3) is 1; at the domain boundary conditions, 
Eq. (4) readily shows that the stencil size for these equations is also 1 for both Dirichlet and Neumann conditions. Finally, 
the stencil size for immersed boundary conditions Eq. (10) and Eq. (13) is determined by the farthest node included in 
Iχ , χ = P , B , that is the opposite corner node defined in Sect. 2.3. Considering the ghost cell (i, j), we now determine the 
associated stencil size ci, j :

• when n points to the top right quadrant, the opposite corner node is (ic + p − 1, jc + p − 1) and

ci, j = ‖Xic+p−1, jc+p−1 − Xi, j‖c = ‖Xic+1, jc+1 − Xi, j‖c + p − 2 ; (21a)

• when n points to the top left quadrant, the opposite corner node is (ic − p + 1, jc + p − 1) and

ci, j = ‖Xic−p+1, jc+p−1 − Xi, j‖c = ‖Xic−1, jc+1 − Xi, j‖c + p − 2 ; (21b)
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Fig. 6. Examples of sets of interpolation nodes I P and I B on square cells. Notations of Fig. 3 applies. For the linear method, equation associated with the 
highlighted ghost node has a stencil of 2 as the probe point is farther than one cell width. For the direct method with the same discrete problem, equation 
associated with the highlighted ghost node has a stencil of 1 as the boundary point is closer that one cell width.

• when n points to the bottom left quadrant, the opposite corner node is (ic − p + 1, jc − p + 1) and

ci, j = ‖Xic−p+1, jc−p+1 − Xi, j‖c = ‖Xic−1, jc−1 − Xi, j‖c + p − 2 ; (21c)

• when n points to the bottom right quadrant, the opposite corner node is (ic + p − 1, jc − p + 1) and

ci, j = ‖Xic+p−1, jc−p+1 − Xi, j‖c = ‖Xic+1, jc−1 − Xi, j‖c + p − 2 . (21d)

The determination of ci, j is then deduced from the case p = 2 where Iχ contains just the four nodes surrounding xχ ;

• when n points to the right

xχ ≤ Xic+1 < xχ + hx, leading to
|Xic+1 − Xi|

hx
=

⌈ |xχ − Xi|
hx

⌉
, (22a)

• when n points to the left

xχ − hx ≤ Xic−1 < xχ , leading to
|Xic−1 − Xi|

hx
=

⌈ |xχ − Xi|
hx

⌉
, (22b)

• when n points to the top

yχ ≤ Y jc+1 < yχ + hy, leading to
|Y jc+1 − Y j|

hy
=

⌈ |yχ − y j|
hy

⌉
, (22c)

• when n points to the bottom

yχ − hy ≤ Y jc−1 < yχ , leading to
|Y jc−1 − Y j|

hy
=

⌈ |yχ − Y j|
hy

⌉
, (22d)

where x �→ �x� is the ceiling operator. Therefore, we obtain for any direction of n

ci, j = ⌈‖xχ − Xi, j‖c

⌉ + p − 2 . (23)

We can now deduce ci, j from the position of xχ with respect to Xi, j . Equation (8) shows that ‖xχ − Xi, j‖2 is bounded 
by the cell size. We can use this property again to find a useful approximation of Eq. (23) with the help of the equivalence 
property Eq. (19)
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Fig. 7. Examples of sets of interpolation nodes I P and I B on rectangular cells a = 4. Notations of Fig. 3 applies. For the linear method, equation associated 
with the highlighted ghost node has a stencil of 4, while for the direct method with the same discrete problem, equation associated with the highlighted 
ghost node has a stencil of 2. In the direct method, Ui, j is not part of the set of interpolation nodes, and the boundary condition become ill posed.

Table 1
Stencil size for the Poisson problem with different immersed boundary conditions, immersed 
boundary methods, and different cell size ratios. Interpolation orders p are set to ensure 
second-order limiting behavior.

Cell size ratio Method Stencil size

Dirichlet p = 2 Neumann p = 3

1 Linear 2 3
Direct 1 2

a > 1 Linear �2a� �2a� + 1
Direct n/a n/a

‖xB − Xi, j‖c ≤ 1

μ
‖xB − Xi, j‖∞ ≤ 1

μ
‖xB − Xi, j‖2 ≤ h

μ
, ‖xP − Xi, j‖c ≤ 2‖xB − Xi, j‖c ≤ 2

h

μ
. (24)

This equation suggests that the stencil size increases as the cell size ratio a = h/μ increases, and examples presented in
Figs. 6–7 show that it does increase. The figures present sets of interpolation nodes obtained with p = 2 and on very coarse 
grids around a circular immersed boundary. Fig. 6 uses a 4 × 4 mesh of squares cells. The stencil size is 1 for the direct 
method and 2 for the linear method due to the greater distance reached by the probe points with respect to the ghost 
node. Fig. 7 uses a 4 × 16 mesh of rectangular cells so a = 4. The highlighted ghost node has a stencil size of 2 for the 
direct method and 4 for the linear method. Indeed the stencil size has increased. More importantly for the direct method, 
(i, j) is no longer part of I B and the second constraint of Eq. (14) is not verified anymore. Table 1 summarizes minimum 
stencil sizes to obtain a second-order limiting behavior for different cell size ratios and for Dirichlet and Neumann boundary 
conditions.

Conclusion. To reach second-order limiting behavior, this section showed that only the direct method is able to provide 
a stencil of size 1, i.e. a compact stencil, for the Dirichlet boundary condition. Moreover, it is not possible to expect a 
second-order limiting behavior when using Neumann boundary conditions on stencils of size 1 and for both methods; the 
stencil size must be at least equal to 2. On rectangular meshes, the direct method does not work anymore, and the stencil 
of the linear method increases as the cell size ratio a. Therefore band matrices become less suitable, and maybe inoperable, 
as more diagonals must be allocated as a increases. Next section proposes a method that reduces the stencil size to the one 
observed on square cells.
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4. The Ghost Node Shifting Method

This section defines the Ghost Node Shifting Method introduced in this paper. It modifies the linear and direct methods 
described in Sect. 2.2 to reduces the stencil size discussed in Sect. 3.

At high cell size ratio, the closest point of � with respect to Xi, j may be several cells away, as in the example Fig. 7b. 
But, as shown in Fig. 2, there is at least one point, i.e. xC , which is less than one cell away from the ghost cell. The idea 
of the following method is to shift Xi, j towards xC so that the new closest point will be closer to xC and thus fewer cells 
away.

4.1. Ghost point

We consider a ghost cell (i, j) and its inner cell neighbor (k, l) as in Sect. 2.2. We define the ghost point xG as

xG = xC − se , s = min
{
μ,‖xC − Xi, j‖2

}
, e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(+1,0)ᵀ if (k, l) = (i + 1, j) ,

(−1,0)ᵀ if (k, l) = (i − 1, j) ,

(0,+1)ᵀ if (k, l) = (i, j + 1) ,

(0,−1)ᵀ if (k, l) = (i, j − 1) ,

(25)

recalling that μ = min{hx, hy}. The unit vector e gives the direction of xC from xG and the definition of s ensures that the 
distance between the two points is at most μ. Fig. 8 illustrates the definition of xG for (k, l) = (i + 1, j). The situation from 
the point of view of xG is similar to the case of a square cell of size μ, which fits in the cell (i, j). Now the quantities xB , 
xP , d, n are redefined as in Sect. 2.2, but using xG instead of Xi, j . The modified quantities are noted xB ′ , xP ′ , d′ , n′ and 
Fig. 8 also shows these redefinitions.

The representation of the immersed boundary becomes important here. If � is represented by an exact parametrization 
or a piecewise linear curve, evaluations of d′ and n′ can be evaluated up to machine epsilon; if � is represented by a 
discretized level-set field, some sort of interpolation must be considered. In the numerical simulations presented in this 
document, d′ and n′ can be evaluated up to machine epsilon.

4.2. Shifted linear and direct methods

The steps of the linear method Sect. 2.2.1 are done again replacing Ui, j by uG = u(xG)

uG + u P ′

2
= uB ′ + O(d′ 2) , (26a)

u P ′ − uG

2d′ = ∂nuB ′ + O(d′ 2) . (26b)

As uG is not a node value, another p-th order interpolation is introduced:

uG =
∑

(k,l)∈IG

γk,lUk,l + O(hp) , (27)

where interpolation coefficients γk,l and the set of interpolation indices IG are computed as described in Sect. 2.3. The fully 
discretized equations are then∑

(k,l)∈IG

1

2
γk,lUk,l +

∑
(k,l)∈I P ′

1

2
ρ ′

k,lUk,l = D(xB ′) + O(h2) + O(hp) , ∀(i, j) ∈ C g , (28a)

∑
(k,l)∈I P ′

1

2d′ ρ
′
k,lUk,l −

∑
(k,l)∈IG

1

2d′ γk,lUk,l = N(xB ′) + O(h2) + O(hp−1) , ∀(i, j) ∈ C g , (28b)

where ρ ′
k,l are the interpolation coefficients for P ′ . Like the non-shifted Eq. (10), a numerical approximation of the Poisson 

problem can be built using the shifted linear method Eq. (28), and a second-order limiting behavior is obtained if second-
order interpolations are used with Dirichlet boundary conditions, and if third-order interpolations are used with Neumann 
boundary conditions.

The direct method Sect. 2.2.2 can be applied seamlessly.∑
(k,l)∈I B′

β ′
k,lUk,l = D(xB ′) + O(hp) , ∀(i, j) ∈ C g ∩ ∂�D , (29a)

∑
(k,l)∈I B′

(∂xβ
′
k,lnx + ∂yβ

′
k,lny)Uk,l = N(xB ′) + O(hp−1) , ∀(i, j) ∈ C g ∩ ∂�N , (29b)
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Fig. 8. The Ghost Node Shifting Method applied to the example Fig. 2. The ghost point xG , initially placed at Xi, j , is shifted towards Xk,l . As a result, 
boundary and probe points computed from xG are closer to the cell (i, j). The actual position of xG is at the corner of the gray square of size μ.

where β ′
k,l are the interpolation coefficients for B ′ , and ∂xβ

′
k,l and ∂yβ

′
k,l are the interpolation coefficients of the polynomial 

gradient for B ′ . The effects of the Ghost Node Shifting Method affects the equations through xB ′ and n′ only. Like the 
non-shifted Eq. (13), a numerical approximation of the Poisson problem can be built using the shifted direct method Eq. (29), 
and a second-order limiting behavior is obtained if second-order interpolations are used with Dirichlet boundary conditions, 
and if third-order interpolations are used with Neumann boundary conditions.

4.3. Stencil size of the shifted methods

The discussion of Sect. 3.2 applies here, and Eq. (23) holds. In this section, we look for a new bounding of ‖xχ − Xi, j‖c , 
χ = P , B to provide a better approximation of Eq. (23). Let’s start by developing the norm

‖xχ − Xi, j‖c ≤ max

{ |xχ − xG | + |xG − xi |
hx

,
|yχ − yG | + |yG − y j|

hy

}
. (30)

The xG − Xi, j part depends on the location of the neighbor inner cell⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|xG − xi | < hx − μ,|yG − y j| = 0 , if (k, l) = (i + 1, j) ,

|xG − xi | < hx − μ,|yG − y j| = 0 , if (k, l) = (i − 1, j) ,

|xG − xi | = 0 , |yG − y j| < hy − μ, if (k, l) = (i, j + 1) ,

|xG − xi | = 0 , |yG − y j| < hy − μ, if (k, l) = (i, j − 1) .

(31)

The xχ − xG part exploits its similarity with a square cell of size μ

‖xB ′ − xG‖∞ ≤ ‖xB ′ − xG‖2 ≤ ‖xC − xG‖2 ≤ μ, (32a)

and, by symmetry of the probe point,

‖xP ′ − xG‖∞ ≤ 2μ. (32b)

The absolute values in Eq. (30) can then be replaced by these upper bounds. If (k, l) = (i ± 1, j):

‖xP ′ − Xi, j‖c ≤ max

{
hx − μ + 2μ

hx
,

2μ

hy

}
≤ 2 , ‖xB ′ − Xi, j‖c ≤ max

{
hx − μ + μ

hx
,

μ

hy

}
≤ 1 , (33a)

and if (k, l) = (i, j ± 1):

‖xP ′ − Xi, j‖c ≤ max

{
2μ

hx
,

hy − μ + 2μ

hy

}
≤ 2 , ‖xB ′ − Xi, j‖c ≤ max

{
μ

hx
,

hy − μ + μ

hy

}
≤ 1 . (33b)
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Fig. 9. Examples of sets of interpolation nodes I P ′ and I B ′ on rectangular cells a = 4. Notations of Fig. 3 applies. Using the Ghost Node Shifting Method on 
the same discrete problem than Fig. 9, equation associated with the highlighted ghost node has a reduced stencil of 2 for the linear method, and 1 for the 
direct method. In the direct method, Ui, j is now part of the set of interpolation nodes.

Table 2
Stencil size for the Poisson problem with different immersed boundary conditions, immersed 
boundary methods, and different cell size ratios. Interpolation orders p are set to ensure 
second-order limiting behavior.

Cell size ratio Method Stencil size

Dirichlet p = 2 Neumann p = 3

1 Linear 2 3
Direct 1 2

a > 1 Linear �2a� �2a� + 1
Direct n/a n/a

a > 1 Shifted Linear 2 3
Shifted Direct 1 2

Contrary to Eq. (24), these bounds do not depend on the cell size ratio. The example presented in Sect. 3.2 (Figs. 6–7) is 
completed here by Fig. 9, which uses the shifted methods. The highlighted ghost node now has a stencil of 1 for the direct 
method and 2 for the linear method. Table 2 summarizes minimum stencil sizes to obtain a second-order limiting behavior 
and for different cell size ratios.

Conclusion. This section showed that it is possible to build immersed boundary conditions with a stencil size independent 
of the cell size ratio. The stencil size for rectangular cells is the same than the stencil size for square cells, which is the 
lowest size to be expected. With the Ghost Node Shifting Method, it is also possible to use the direct method on rectangular 
cells. This result is particularly useful to use band-matrix-limited linear system solvers such as in the hypre library. The next 
section present numerical results obtained for the Poisson problem.

5. Numerical simulations with the Poisson problem

This section discusses simulations of the Poisson problem solved with the Ghost Node Shifting Method and compare 
them with their classic counterparts.

Diagnostics. Simulations consists of convergence studies. As analytical solutions are available, the error field Û − U can be 
computed at inner nodes, and L2 norm and L∞ norm are used for comparison. These norms are
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Fig. 10. Computational domain and immersed boundary used for numerical simulations of Sect. 5. The immersed boundary is shown by a thick colored 
line, and the outer domain is shaded by dots.

L2(Û − U ) =
√ ∑

(i, j)∈Ci

|Û i, j − Ui, j|2 V i, j , L∞(Û − U ) = max
(i, j)∈Ci

|Û i, j − Ui, j| , (34)

where V i, j is the volume of the inner portion of the cell (i, j). The numerical evaluation of V i, j is subject to errors due 
to the approximation in the representation of the immersed boundary, and it must be carefully done. We found that using 
cell-wise linear approximation were inaccurate and unreliable to evaluate the order of convergence. This happens because 
errors in V i, j computed this way were of the same order that |Û i, j − Ui, j |2. Instead we use a sub-sampling method as 
follows: first, take 400 × 400 sampling points evenly spread in the cell; then evaluate the ratio of sampling points included 
in �i ; finally approximate the cell volume by multiplying hx × hy to this ratio. With this method, errors in V i, j are below 
10−6 for all runs.

Computational domain. The common computational domain for all simulations in this section is the square � = [−1,+1]2, 
with Dirichlet boundary conditions at the x-axis boundaries and Neumann boundary conditions at the y-axis boundaries. In 
the first set of simulations, the immersed boundary � is a circle of center (0, 0)ᵀ and of radius 0.65; in the second set of 
simulations the immersed boundary � has a 5-branch flower shape defined by the parametrization

ϑ �→ (0.02
√

5,0.02
√

5)ᵀ + (
0.5 + 0.2 sin(5ϑ)

)
er , ∀ϑ ∈ [0,2π [ . (35)

This shape has also been used in [16,17]. In both immersed boundaries, the inner part �i is outside, as illustrated in Fig. 10.

Grids. We consider three mesh series with cell size ratio a of 1, 2.8, and 7.6. The first grid of each series has a cell size 
m × n of 16 × 16, 28 × 10, and 76 × 10, respectively. The next grid of each series is obtained by multiplying the preceding 
m and n by two in all directions. Thus convergence study can be performed on each of the grid series.

Numerical correction. Differences between numerical and exact solutions arise from the truncation terms Ri, j = Fi, j −(LU )i, j

of the Poisson equation Eq. (3), the domain boundary conditions Eq. (4), and the immersed boundary conditions Eq. (10), 
(13), (28), (29) altogether. In the resulting error field Û − U , differences from all sources are fused together by diffusion, 
and numerical errors resulting from immersed boundary conditions alone cannot be readily seen. As an example, Fig. 11a 
shows the error field for the first numerical run presented in Sect. 5.1: the largest errors are both near the domain boundary 
and near the immersed boundary, which is coherent with the magnitude of the truncation terms at x = (1, 0)ᵀ and x =
(0.65, 0)ᵀ

rhx,hy (1,0) = −h2
x

4
, rhx,hy (0.65,0) = −

(
(1 − θ)θ2 + (1 − θ)2θ

) h2
x

2
, with θ ∈ [0,1], (36)

where rhx,hy (x) is the truncation term taken at point x. Equation (40) has been used for rhx,hy (1, 0) and Eq. (41) has been 
used for rhx,hy (0.65, 0).

As we are primarily interested on errors caused by the immersed boundary conditions, we decided to cancel error 
sources that are not related to immersed boundaries. To do this, we compute Ri, j from the exact solution and we add 
it to the right-hand side of the system for all but immersed boundary condition. We call this the numerical correction. 
Fig. 11b shows effects on the error field when the numerical correction is applied: remaining errors are clearly located near 
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Fig. 11. (a, b) Effects of numerical correction on the error fields |Û − U | for the problem Sect. 5.1 on the 16 × 16 grid and with the non-shifted direct 
method. (c) Effects of numerical correction on the convergence plot Fig. 12 with a = 1 and with the non-shifted direct method. A second-order limiting 
behavior is shown for the error field both with and without numerical correction, but the norm with the largest error is not the same: L2 without 
numerical correction and L∞ with numerical correction.

immersed boundaries. Finally, Fig. 11c compares convergence results in L∞ and L2 norms for the same computations: while 
the second-order behavior is present in the two computations, errors are divided by 5

2 in the L2 norm when numerical 
correction is applied.

5.1. Dirichlet immersed boundary condition for the circular interface

Analytical solution. A solution of the Poisson equation is given by

u(x, y) = (1 + x)2 , f (x, y) = −2 , ∀(x, y) ∈ �i , (37)

provided consistent boundary conditions

u(−1, y) = 0 , u(+1, y) = 4 , ∀y ∈ [−1,+1] , (38a)

∂u

∂ y
(x,−1) = 0 ,

∂u

∂ y
(x,+1) = 0 , ∀x ∈ [−1,+1] , (38b)

u(x, y) = (1 + x)2 , ∀(x, y) ∈ � . (38c)

The truncation terms for this particular solution are

Fi, j − Ui−1, j − Ui, j

h2
x

− Ui+1, j − Ui, j

h2
x

− Ui, j−1 − Ui, j

h2
y

− Ui, j+1 − Ui, j

h2
y

= 0 , ∀(i, j) ∈ Ci , (39)

0 − U0, j + U1, j

2
= − 1

4 h2
x , 4 − Um, j + Um+1, j

2
= − 1

4 h2
x , ∀ j ∈ �1,n� ,

0 − Ui,1 − Ui,0

hy
= 0 , 0 − Ui,n+1 − Ui,n

hy
= 0 , ∀i ∈ �1,m� .

(40)

Therefore only the Dirichlet boundary conditions at the x-axis boundaries will be numerically corrected.

Results. Numerical solutions Û are computed using the linear and the direct methods for the isotropic series, and the 
non-shifted linear (NL) method, the shifted linear (SL) method, and the shifted direct (SD) method for the two anisotropic 
series. Second-order interpolations (p = 2) are used to build immersed boundary conditions. Fig. 12 shows L2 and L∞
norms of the error field Û − U . As expected, a second-order limiting behavior is obtained with all methods.

The figure also shows that the SD method has less errors than the NL method. The L2 norm of the SL method is similar 
to the L2 norm of the SD method, whereas the L∞ norm of the SL method is as large as the NL method when a = 2.8, 
and changes when a = 7.6. Fig. 13 shows the error field for the 608 × 80 grid, e.g. when the L∞ norm of the SL method 
does not decrease as expected: large error occurs around four nodes only. On the close up Fig. 13a, ghost cells are filled 
according to the compactness: white if ci, j = 1, and black if ci, j = 2. One can readily see that large errors occur near nodes 
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Fig. 12. Norms of the solution error Û − U of the Poisson problem for Dirichlet immersed boundary condition on the circular interface Sect. 5.1. Each plot 
represents a mesh series. Solutions have been computed with the non-shifted linear, shifted linear, and shifted direct methods, except for the shifted linear 
method on the mesh series a = 1.0 as it is equivalent to the non-shifted linear method. The non-shifted direct did not converge when a > 1.0 as expected 
in Sect 3.2 and in Fig. 7. The x-axis represents 1/h = 1/ max{hx, hy} = min{nx, ny}, which is always equal to n in this section.

Fig. 13. Error fields |Û − U | for the solution of Poisson problem with Dirichlet boundary conditions described in Sect. 5.1. Open symbols indicates ghost cell 
with a stencil size of 1, and closed symbols indicates ghost cells with a stencil size of 2.

with ci, j = 2. By comparison, Fig. 13b shows the corresponding results with the SD method: as ci, j = 1 everywhere, large 
errors have disappeared. This feature calls for a finer analysis of the truncation error.

Taylor series of the truncation error. Let’s consider a one-dimensional grid containing only three grid nodes, located at: 
x−1 = −h, x0 = 0, and x+1 = +h. An immersed boundary crosses the grid at xB = x−1 + θh, with θ ∈ [0, 1], as shown in 
the diagram Fig. 14a. Using Taylor series of a scalar field u expanded at xB , the direct method writes

ûB = (1 − θ)u−1 + θu0 = uB +
∞∑

k=1

[
(1 − θ)(−θ)k + θ(1 − θ)k

]hk

k!
∂ku

∂xk
, if 0 ≤ θ ≤ 1, (41)

and the linear method writes
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Fig. 14. Coefficients of the Taylor’s series of the truncation error.

ûB = (1 − 2θ)u−1 + 2θu0

= uB +
∞∑

k=1

[
(1 − θ)(−θ)k + θ(1 − θ)k

]hk

k!
∂ku

∂xk
, if 0 ≤ θ ≤ 1

2
, (42a)

ûB = (2 − 2θ)u0 + (2θ − 1)u+1

= uB +
∞∑

k=1

[
(θ − 1

2 )(2 − θ)k + (1 − θ)(1 − θ)k + 1
2 (−θ)k

]hk

k!
∂ku

∂xk
, if

1

2
≤ θ ≤ 1. (42b)

Notice that the compactness of the linear method is 1 when 0 ≤ θ ≤ 1
2 and 2 when 1

2 ≤ θ ≤ 1. Coefficients of the first eight 
terms of the series are shown in Fig. 14a for the direct method, and in Fig. 14b for the linear method. Coefficients are 
identical when 0 ≤ θ ≤ 1

2 , whereas coefficients of the linear method have much higher values when 1
2 ≤ θ ≤ 1. We therefore 

can expect higher error values from the linear method when the compactness is 2, which can reasonably explain the results 
of the two dimensional computation.

5.2. Neumann immersed boundary condition for the circular interface

Analytical solution. Another solution of the Poisson equation is given by the solution and source fields

u(x, y) = (1 + x)3 , f (x, y) = −6(1 + x) , ∀(x, y) ∈ �i , (43)

provided consistent computational domain boundary conditions

u(−1, y) = 0 , u(+1, y) = 8 , ∀y ∈ [−1,+1] , (44a)

∂u

∂ y
(x,−1) = 0 ,

∂u

∂ y
(x,+1) = 0 , ∀x ∈ [−1,+1] , (44b)

∂nu(x, y) = 6x(1 + x)2 , ∀(x, y) ∈ � . (44c)

The truncation terms for this particular solution are

Fi, j − Ui−1, j − Ui, j

h2
x

− Ui+1, j − Ui, j

h2
x

− Ui, j−1 − Ui, j

h2
y

− Ui, j+1 − Ui, j

h2
y

= 0 , ∀(i, j) ∈ Ci , (45)

0 − U0, j + U1, j

2
= 0 , 8 − Um, j + Um+1, j

2
= − 3

2 h2
x , ∀ j ∈ �1,n� ,

0 − Ui,1 − Ui,0

hy
= 0, 0 − Ui,m+1 − Ui,m

hy
= 0 , ∀i ∈ �1,m� .

(46)

Again, only the Dirichlet boundary conditions at ∂�l and ∂�r will be numerically corrected.
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Fig. 15. Norms of the solution error Û − U of the Poisson problem for Neumann immersed boundary condition on the circular interface Sect. 5.2. Each plot 
represents a mesh series. Solutions have been computed with the non-shifted linear, shifted linear, and shifted direct methods, except for the shifted linear 
method on the mesh series a = 1.0 as it is equivalent to the non-shifted linear method. The x-axis represents 1/h = 1/ max{hx, hy} = min{nx, ny}, which is 
always equal to n in this section.

Results with second-order interpolation. Numerical solutions Û are computed using the methods described in Sect. 5.1. 
Second-order interpolations (p = 2) are used to build immersed boundary conditions. Fig. 15 shows L2 and L∞ norms 
of the error field Û − U . As expected, a first-order limiting behavior is obtained with all methods. As with Dirichlet bound-
ary conditions, the figure also shows that, for any given grid, the shifted linear methods SL and SD have less errors than the 
non-shifted linear method NL. The two shifted methods SL and SD are equivalent in terms of both L2 and L∞ norms.

Results with third-order interpolation. The same computations are performed again, but third order interpolations (p = 3) 
are used to build immersed boundary conditions. Fig. 16 shows L2 and L∞ norms of the error field Û − U . As expected, 
a second-order limiting behavior is obtained with all methods. As with second-order interpolations, the figure also shows 
that, for any given grid, the shifted linear methods SL and SD have less errors than the non-shifted linear method NL. The 
two shifted methods SL and SD are equivalent in terms of both L2 and L∞ norms.

5.3. Dirichlet immersed boundary condition for the flower-shaped interface

The parabolic analytical solution Eq. (37) with Dirichlet boundary conditions is also applied here. Numerical solutions Û
are computed using the shifted linear (SL) and the shifted direct (SD) methods for all series. As the anisotropy increases, 
the low resolved grids become less and less adapted to the immersed boundary, and the hollow case problem discussed in 
Sect. 2.3 starts to occur. This is shown in Fig. 17 where a row of four inner nodes are surrounded by ghost cells only, except 
on the left side.

To complete this convergence study, we used another grid series with a = 4.7, and we increase the resolution for a = 7.6
to catch the limiting second-order convergence region. Fig. 18 shows L2 and L∞ norms of the error field Û − U . As 
expected, a second-order limiting behavior is obtained with all methods. Here again, error levels of the SD method are less 
or equal than error levels of the SL method. For sufficiently high resolution, a convergence is recovered for the grid series 
a = 7.6.

5.4. Solver comparison

Simulations presented in Sect. 5.3 and Sect 5.2 have been used to compare the performance of different linear system 
solvers. As the stencil size is 1 for the direct method, we use the GMRES solver with the SMG preconditioner from the hypre
library (GMRES+SMG), and as the stencil size of the linear method is 2, we use the GMRES solver with the BoomerAMG 
preconditioner from the same library (GMRES+BoomerAMG). The allowed residual for all solvers is 10−10. Also, the mumps
solver has been used in both cases, for which we do not count time take by the symbolic factorization, which is quite long. 
Computations have been done in parallel using 16 processes on Intel® Xeon® CPU E5-4640 0 at 2.40 GHz, and solver details 
are given in Appendix B.

If we give a look to the flower test case with Dirichlet boundary conditions in Table 3, between the two iterative 
solvers, GMRES+BoomerAMG is faster than GMRES+SMG at low resolutions, but the former slows much more rapidly as the 



J. Picot, S. Glockner / Journal of Computational Physics 364 (2018) 18–48 35

Fig. 16. Norms L2 and L∞ of the solution error Û −U for the Poisson problem with Neumann immersed boundary conditions and third-order interpolation, 
as presented in Sect. 5.2. The non-shifted linear, shifted linear, and shifted direct methods are computed in each of the three mesh series. Although, 
the shifted linear method is not shown for the mesh series a = 1, as it is equivalent to the non-shifted linear method. The x-axis represents 1/h =
1/ max{hx, hy} = min{nx, ny}, which is always equal to n in this section.

Fig. 17. Close view of node types near a hollow part of the Flower-shaped immersed boundary with a gird of ratio a = 7.6. Outlined by a dashed box, a 
row of four inner cells are surrounded by ghost cells except on the left. Also outlined by a dashed box, an outer cell whose value is used in interpolation 
due to the hollow case problem. Large error is expected in this region.

grid size increases. It confirms the interest we have to get the most compact scheme. It is also another advantage of the 
direct method which seems to be more precise than the linear method. Note that for the circular interface with Neumann 
immersed boundary conditions in Table 4, for the finest mesh and a = 4.7, both GMRES+SMG and GMRES+BoomerAMG fail 
or converge very slowly; instead we used mumps. The direct mumps solver is slower than their iterative counterparts, yet 
competitive; it is also less affected by the anisotropy a and is even faster than GMRES+SMG in one case.
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Fig. 18. Norms L2 and L∞ of the solution error Û − U for the Poisson problem with Flower-shaped immersed boundary. The x-axis represents 1/h =
1/ max{hx, hy} = min{nx, ny}, which is always equal to n in this section.

Table 3
Comparison of the performance of linear system solvers to solve the Poisson problem with a Flower-shaped 
immersed boundary and Dirichlet boundary conditions Sect. 5.3 in terms of GMRES iterations (Iter. columns) and 
CPU time (Time columns). The tolerance of the GMRES solver is 10−10. Mumps symbolic factorization is not taken 
into account in the CPU time. Computations have been done in parallel with 16 processes on Intel® Xeon® CPU 
E5-4640 0 at 2.40 GHz.

a Grid Direct method Linear method

GMRES+SMG MUMPS GMRES+BoomerAMG MUMPS
Iter. Time (s) Time (s) Iter. Time (s) Time (s)

1 160 × 160 15 0.06 0.05 18 0.04 0.09
320 × 320 19 0.13 0.14 19 0.12 0.31
640 × 640 23 0.35 0.56 21 0.65 1.32

1280 × 1280 24 1.35 2.71 19 4.01 9.93

7.6 608× 80 18 0.08 0.07 23 0.07 0.12
1216 × 160 17 0.16 0.22 25 0.34 0.53
2432 × 320 21 0.54 0.88 28 1.7 3.5
4864 × 640 29 6.25 4.2 31 24.6 19.7

Table 4
Comparison of the performance of linear system solvers to solve the Poisson problem with a circular immersed 
boundary and Neumann boundary conditions Sect. 5.2 in terms of GMRES iterations (Iter. columns) and CPU 
time (Time columns). The tolerance of the GMRES solver is 10−10. Mumps symbolic factorization is not taken 
into account in the CPU time. Computations have been done in parallel with 16 processes on Intel® Xeon® CPU 
E5-4640 0 at 2.40 GHz.

a Grid Direct method Linear method

GMRES+SMG MUMPS GMRES+BoomerAMG MUMPS
Iter. Time (s) Time (s) Iter. Time (s) Time (s)

2.8 448 ×160 39 0.06 0.11 43 0.1 0.2
896 ×320 46 0.30 0.38 61 0.9 0.75

1792 ×640 41 1.42 1.54 66 4.38 5.10
3584 ×1280 78 14 8.7 126 38 37

4.7 376 ×80 62 0.05 0.06 246 0.23 0.06
752 ×160 138 0.31 0.12 > 500 n/a 0.31

1504 ×320 > 500 n/a 0.59 > 500 n/a 1.90
3008×640 > 500 n/a 3.28 > 500 n/a 8.8
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6. Immersed boundary method with the incompressible Navier–Stokes problem

This section applies the shifted immersed boundary method to the incompressible Navier–Stokes problem with uniform 
density and viscosity. A pressure-correction method on a staggered grid is employed. It is shown here that just applying the 
Ghost-Fluid Finite-Difference to the sub-problems is not enough, and, due to the nonlinear term, an additional extrapolation 
is necessary.

We consider the velocity field u = (u, v)ᵀ : �i ×[0, T ] → R2 and the kinematic pressure p : �i ×[0, T ] → R, both restricted 
to the inner domain, solution of the incompressible Navier–Stokes with uniform density, uniform viscosity, and source field
f : �i × [0, T ] → R2:

∂tu + ∇·(u ⊗ u) = −∇p + ν�u + f , in �i , (47a)

∇·u = 0 , in �i , (47b)

u = D , on ∂�D ∪ �D , (47c)

∇u ·n = N , on ∂�N ∪ �N , (47d)

where ν is the kinematic viscosity, and D and N are known functions.

6.1. Time discretization and velocity–pressure coupling

The timeline [0, T ] is divided in constant time steps ht . Equation (47) is applied at tn+1, the time derivative ∂tu is 
developed backwards, and the nonlinear term is linearized:

1

ht

(
un+1 − un) + ∇·(un+1 ⊗ un) = −∇pn+1 + ν�un+1 + f + O(ht) , in �i , (48a)

∇·un+1 = 0 , in �i , (48b)

un+1 = D , on ∂�D ∪ �D , (48c)

∇un+1 ·n = N , on ∂�N ∪ �N . (48d)

In Eq. (48a), errors introduced by the terms 1
ht

(
un+1 − un

)
and ∇·(un+1 ⊗ un) are collected in O(ht); the pressure gradient 

term ∇pn+1 remains undefined. To solve the velocity–pressure coupling, we use the rotational incremental pressure-
correction scheme [18,19], in which Eq. (48) is divided in two subproblems: a prediction step that does not satisfy the 
solenoidal constraint Eq. (48b), and a correction step. The prediction step consists in solving the advection–diffusion prob-
lem

1

ht

(
u∗ − un) + ∇·(u∗ ⊗ un) = −∇pn + ν�u∗ + f + O(ht) , in �i , (49a)

u∗ = D , on ∂�D ∪ �D , (49b)

∇u∗ ·n = N , on ∂�N ∪ �N , (49c)

in which the pressure pn+1 has been replaced by pn to remove the velocity–pressure coupling. The solution u∗ of Eq. (49) is 
a prediction of un+1, for which ∇·u∗ is not equal to zero, and un+1 can be expressed from the difference between Eq. (48)
and Eq. (49) multiplied by ht

un+1 = u∗ − ht∇φ + O(ht) , in �i , (50a)

φ = pn+1 − pn + ν ∇·u∗ , in �i , (50b)

where the decomposition of the Laplace operator � = ∇(∇·) − ∇×∇× leads to the term ν ∇·u∗ in Eq. (50b), and the 
seemingly missing terms −ht ∇· ((un+1 − u∗) ⊗ un

) + νht ∇×∇×(un+1 − u∗) are in fact collected in O(ht). In Equation (50)
the pressure increment φ is obtained by solving the Poisson problem

∇· (ht∇φ) = ∇·u∗ + O(ht) , in �i , (51a)

∇φ ·n = 0 , on ∂�D ∪ �D , (51b)

φ = 0 , on ∂�N ∪ �N . (51c)

Equations (49)–(51) form the time-discretized Navier–Stokes equations used in this paper.
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Fig. 19. Definitions and notations of the computational domain, the immersed boundary, the mesh, and node types.

6.2. Spatial discretization

A staggered discretization of fields is used: to cell nodes, we consider x-face nodes Xi+ 1
2 , j , ∀(i, j) ∈ �0, m� × �0, n + 1�, 

and y-face nodes Xi, j+ 1
2

, ∀(i, j) ∈ �0, m + 1� × �0, n�. Vector fields are discretized on face nodes: U = (U , V )ᵀ where 
Ui+ 1

2 , j = u(Xi+ 1
2 , j) and V i, j+ 1

2
= v(Xi, j+ 1

2
), and F = (F , G)ᵀ where Fi+ 1

2 , j = f (Xi+ 1
2 , j) and Gi, j+ 1

2
= g(Xi, j+ 1

2
). Cell 

types are assigned using the method Eq. (2) defined in Sect. 2.1. It is applied to cell nodes, x-face nodes, and y-face nodes 
independently, as shown in Fig. 19. This way ensures that the discretized operators defined below are well-defined. Namely, 
two cell nodes that surround an inner face node are either inner or ghost, two face nodes that surround an inner cell node 
are either inner or ghost, and y-face nodes (resp. x-face nodes) that surround an x-face node (resp. y-face node) are either 
inner or ghost. The set of inner, ghost, outer x-face indices are C x

i , C x
g , C x

o , respectively, and the set of inner, ghost, outer 
y-face indices are C y

i , C y
g , C y

o .
Each term of Eq. (49)–(51) discretizes with second-order centered schemes as described in Appendix A; this results in( 1

ht
Ii + A(Un) − νL + E

)
U∗ = 1

ht
Un − GPn + F + B + O(ht) + O(h2) + O(hp) , in C xy

ig , (52a)

ht(L + E)� = DU∗ + B + O(ht) + O(h2) + O(hq−1) , in Cig , (52b)

Un+1 = U∗ − htG� + O(ht) + O(h2) . in C xy
i , (52c)

Pn+1 = Pn + � − νDU∗ + O(h2) , in Ci , (52d)

where C xy
ig = C x

ig ∪ C y
ig , and Ii is the identity matrix over the inner cells and the null matrix elsewhere. As in Sect. 2.1, we 

closed the two first equations using domain and immersed boundary conditions: E and B + O(hp) in Eq. (52a) and E and 
B + O(hq−1) in Eq. (52b). We recall that (EU∗)i, j = Bi, j = 0 over C xy

i , (E�)i, j = Bi, j = 0 over Ci , and the other terms 
evaluate to zero over C xy

g and C g accordingly. Although it is not trivial that terms A(Un), DU∗ , GPn , and G� are well 
defined over C xy

i , so let’s have a closer look to these terms.
According to interpolations and finite-differences involved in Eq. (A.2), A(Un) will be defined over C xy

i , if Un is defined 
over C xy

ig . Therefore the whole iterative process Eq. (52) must output a Un+1 defined over C xy
ig . To this end, the right-hand 

side of Eq. (52c) must be extended over the ghost nodes: U∗ is already extended since it is a solution of Eq. (52a), although 
G� cannot be defined over all ghost nodes (because is would require to define � over some outer nodes). An extrapolation 
of the velocity field must then be added:

(Ii + E)Ũn+1 = Un+1 + B + O(hp) , in C xy
ig , (53)

where Ũn+1 is the new output of Eq. (52).
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Fig. 20. Computational domain and immersed boundary setups for the Poiseuille flow and the Couette flow. A thick black line shows the computational 
domain, a thick colored line shows the immersed boundary and colored dots shades the outer domain.

According to Eq. (A.3b), GPn will be defined over C xy
i , if Pn is defined over Ci plus ghost nodes next to an inner face 

node. Therefore the whole iterative process Eq. (52) must output a Pn+1 defined over Ci plus ghost nodes next to an inner 
face node. To this end, the right-hand side of Eq. (52d) must be extended over the ghost nodes next to an inner face node: 
� is already defined over Cig since it is a solution of Eq. (52b), −νDU∗ is also defined over ghost nodes next to an inner 
face node since the opposite face node is necessarily a ghost node where U∗ is defined and a finite-difference can be 
applied. As a consequence, no extrapolation is necessary for Pn+1.

To summarize, the fully discretized Navier–Stokes equations with immersed boundaries are

( 1

ht
Ii + A(Un) − νL + E

)
U∗ = 1

ht
Un − GPn + F + B + O(ht) + O(h2) + O(hp) , in C xy

ig , (54a)

ht(L + E)� = DU∗ + B + O(ht) + O(h2) + O(hq−1) , in Cig , (54b)

(Ii + E)Un+1 = U∗ − htG� + B + O(ht) + O(h2) + O(hp) , in C xy
ig , (54c)

Pn+1 = Pn + � − νDU∗ + O(h2) , in Ci , (54d)

with the precaution that U0 and P 0 have also been extrapolated over the ghost nodes. Immersed boundary conditions are 
applied three times: in Eq. (54a) and Eq. (54b), and an immersed boundary extrapolation is applied Eq. (54c).

7. Numerical simulations with the incompressible Navier–Stokes problem

This section presents simulations of four cases of the Navier–Stokes problem, and compares results obtained with both 
shifted direct and shifted linear methods. The size of the discretization stencil is the same for prediction and correction 
steps: p = q = 2, which equals to one for the direct method and two for the linear method.

Linear system solvers. The same solvers are used than in Sect. 5, except for the prediction step for which a Jacobi precondi-
tioner is enough. Stationarity tolerance is set to 10−8. Details of the linear system solvers are given in Appendix B.

Diagnostics. For the two first cases, an analytical solution is available. Velocity and pressure error fields, Û − U and P̂ − P , 
are computed at inner nodes, and their L2 and L∞ norms are computed as in Eq. (34). Diagnostics for the two last cases 
will be presented in Sect. 7.3.

7.1. Poiseuille flow

Computational domain and grid. This computation takes place in the Cartesian domain � = [−2, +2] × [−1, +1]. The im-
mersed boundary is a tilted channel of half-height h = 1

3 , and the angle between the x-axis and the axis of the channel is 
α = 0.25 rad, as shown in Fig. 20a. Dirichlet boundary conditions are used at all boundaries, taking values of the analytical 
solution presented below. The same number of cells is used in both directions, so that the cell size ratio is always a = 2.

Analytical solution. Using the coordinate system (eξ , eη), aligned with the channel (see Fig. 20a), the classical solution of 
the Poiseuille flow is
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Fig. 21. Norms L2 and L∞ of the velocity error Û − U and the pressure error P̂ − P for the Poiseuille flow using both the shifted direct (SD) and shifted 
linear (SL) methods. The x-axis represents 1/h = 1/ max{hx, hy} = min{nx, ny}, which is always equal to n in this section.

u = uξeξ , uξ (η) = um

(
1 − η2

h2

)
, (55a)

p(ξ) = p0 +
(
− ∂ p

∂ξ

)
ξ ,

(
− ∂ p

∂ξ

)
= 2ν

h2
um , (55b)

where um is the maximum velocity and p0 is the pressure at the origin. The Reynolds number of the flow is Re = 2hum/ν . In 
the following, p0 = 0, um = 1/(2h), ν = 1/Re, and Re = 20. The average velocity and pressure of the flow are 〈u〉 = 2

3 umeξ

and 〈p〉 = p0 = 0.

Results. Fig. 21 shows convergence results in terms of velocity and pressure errors L∞(Û − U ), L2(Û − U ), L∞( P̂ − P ), 
and L2( P̂ − P ) using shifted direct and shifted linear methods. For both methods, velocity errors and pressure L2 error 
show a second-order limiting behavior, while pressure L∞ error show a limiting behavior between 1.5 and 2. Error levels 
of the linear method are roughly twice as large as error levels of the direct method.

As we choose a consistent size of the discretization stencil (p = q = 2), the limiting behavior of Eq. (54b) is only of first 
order. This result is therefore better than expected. We suspect superconvergence due to the one-dimensional linear profile 
of the pressure field.

7.2. Circular Couette flow

Computational domain and grid. The computational domain is � = [− 9
80 , + 9

80 ] ×[− 9
80 , + 9

80 ], and the immersed boundary is 
two co-axial cylinders shown in Fig. 20b. The radius of the inner and outer cylinders are R i = 0.02 and Ro = 0.1, respectively. 
Dirichlet boundary conditions are used at all boundaries, taking values of the analytical solution presented below. The 
number of cells in the x-axis is four times the number of cells in the y-axis, such that the cell size ratio is always a = 4.

Analytical solution. The cylinders are in rotation with angular velocities ωi and ωo, respectively. They induce motion to the 
fluid, and the classical solution of the Couette flow using the polar coordinates (er , eθ ) is

u = uθeθ , uθ (r) = A

2
r + B

r
, (56a)

p(r) = p0 + A2

8
r2 + AB ln(r) − B2

2r2
, (56b)

where p0 is an integration constant, and constants A and B are deduced from parameters:

A = 2
ωo R2

o − ωi R2
i

R2
o − R2

i

, B = (ωi − ωo)
R2

i R2
o

R2
o − R2

i

. (57)

In the following p0 = 0, ωi = 0.5 rad, and ωo = 0 rad.
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Fig. 22. Norms L2 and L∞ of the velocity error Û − U and the pressure error P̂ − P for the Couette flow using both the shifted direct (SD) and shifted 
linear (SL) methods. The x-axis represents 1/h = 1/ max{hx, hy} = min{nx, ny}, which is always equal to n in this section.

Results. Fig. 22 shows convergence results in terms of velocity and pressure errors L∞(Û − U ), L2(Û − U ), L∞( P̂ − P ), 
and L2( P̂ − P ). A minimum resolution of 64 cells in the low-resolved axis is required in order to properly represent 
the inner boundary. Velocity-related indicators show a second-order limiting behavior, whereas L∞( P̂ − P ) shows only a 
first-order limiting behavior and L2( P̂ − P ) shows an in-between behavior. As with the Poiseuille flow, error levels of the 
linear method are roughly twice as large as error levels of the direct method. These results are again consistent with the 
chosen size of the discretization stencil.

7.3. Flows around circular and elliptic cylinders

The following numerical simulations validate the method on stationary flows around two cylinders of different shapes: 
circular and elliptic. The former have been extensively studied in the literature, while the latter demonstrates the interest 
of rectangular cells.

Computational domain and grid. The computational domain represents a tank of the 2-dimensional real space, whose di-
mensions are � = [−15, +30] × [−15, +15], and the flow goes from left to right. Domain boundary conditions are: uniform 
inlet of velocity (u∞, 0)ᵀ at the left boundary, slip at top and bottom boundaries, and Neumann at the right boundary. 
The cylinder is placed at the origin. A regular grid of ratio a = 3.0 is placed over a small domain of interest, of dimensions 
[−1, +3] × [−1.5, +1.5], while exponential grids are placed around. On the y-axis, we used that 512 nodes in the domain 
of interest and 256 nodes in each exponential region. On the x-axis, we used 1536 nodes in the domain of interest to 
have a = 3.0 and 768 nodes in each stretched region. Fig. 23 shows the computational domain, the grid and the domain of 
interest.

The circular cylinder has diameter d = 1; the elliptic cylinder has major axis d = 1 and axis ratio 0.2; thus the character-
istic length is d for both cylinders. The major axis of the elliptic cylinder is aligned with the x-axis of the coordinate frame 
�′ = (ex′ , ey′ ), which is rotated by α with respect to the original coordinate frame � = (ex, ey) where the x-axis is aligned 
with the stream. The angle α is also the angle of incidence; it is set to −80◦ for the elliptical cylinder, and can be considered 
set to 0◦ for the circular cylinder. Fig. 24 shows both cylinders with a description of their dimensions.



42 J. Picot, S. Glockner / Journal of Computational Physics 364 (2018) 18–48

Fig. 23. Computational domain and grid used to simulate the flow around the two cylinders, Sect. 7.3. Only one grid line out of 16 is drawn for the sake of 
readability. The regular sub-domain region is outlined in dashed colored lines.

Fig. 24. Dimensions of circular and elliptic cylinders. The boundary is shown by a thick colored line, and the outer domain is shaded by dots. Axes of the 
cylinder reference frame �′ = (ex′ , ey′ ) are also shown.

We choose the free-stream velocity u∞ = 1 and, and we set the viscosity according to the desired value of the Reynolds 
number. For the elliptic cylinder, the Reynolds number is based on the long axis, thus Re = du∞/ν both cases. The Reynolds 
number is set to Re = 40 for the circular cylinder, and set to Re = 20 for the elliptic cylinder.

Diagnostics. As no analytical solution exists, we compare our results to experimental and numerical data found in the 
literature. First, we compare the position of seven different points of interest: four separation points on the surface of the 
obstacle a− , a+ , b− , and b+; two vortex cores c− and c+ , and the steady point at the right of the wake vortices d. Fig. 25
shows these points for the two cylinders. Cartesian and polar coordinates of a point of interest is noted with the subscript 
a = (ax, ay)

ᵀ for the former and a = (ar, aθ )
ᵀ for the latter. Next, we compute the drag and lift coefficients

CD = Fx
1
2 du2∞

, CL = Fy
1
2 du2∞

, (58)

where Fx and Fy are the streamwise and the transverse components of the volumic drag force F . This force corresponds to 
the surface force of the fluid integrated over the cylinder �; it decomposes into pressure and viscous components
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Fig. 25. Points of interest a− , a+ , b− , b+ , c− , c+ , and d of the steady wake flow. The streamlines are extracted from computations.

F = Fp + Fν =
∫
�

−pnd� +
∫
�

2νεnd� , (59)

where p is the kinematic pressure and ε = 1
2 ν(∇u + ∇uᵀ) is the strain rate tensor. Drag and lift coefficients can then be 

decomposed into pressure and viscous components.

CL p = Fp y
1
2 du2∞

, CLν = Fν y
1
2 du2∞

, CD p = Fp x
1
2 du2∞

, CDν = Fν x
1
2 du2∞

. (60a)

The numerical evaluation of Fp and Fν approximates � by cell-wise line segments upon which p and ε are considered 
uniform. Second-order extrapolations are used to compute p and ε on the middle of the line segments, using nodes values 
from the inner domain only. Finally, we give a closer look at the normalized pressure profile C p around the cylinder, defined 
by

C p = p
1
2 du2∞

. (61)

Results. Both simulations converge towards a steady state containing two recirculation regions. Both direct and linear meth-
ods gives very similar results. Coordinates of the points of interest are reported in Table 5 for the circular cylinder and in 
Table 6 for the elliptic cylinder. Good agreement with literature data is observed for the circular cylinder; Table 5 also shows 
data from the literature. Lengths for the elliptic cylinder recirculations are coherent with the streamline visualizations of 
Yoon et al. [20].

Drag coefficients are reported in Table 7 for the circular cylinder (lift coefficients are below 10−8). The value is in the 
range of values found in the literature. Drag and Lift coefficients, reported in Table 8 for the elliptic cylinder, are valid for 
the range of values found in the literature. Most of the drag is due to the pressure component. It is interesting to note that 
pressure and viscosity have opposite contribution to lift. Finally, profiles of normalized pressure C p as a function of θ are 
shown on Fig. 26. The profile for the circular cylinder Fig. 26a follows closely the profiles found in the literature [30–32]. 
The profile for the elliptic cylinder Fig. 26b has a maximum and minimum pressure than the circular cylinder. Although, 
very low pressure are seen at the tips of the ellipse (θ = 0◦, 180◦).



44 J. Picot, S. Glockner / Journal of Computational Physics 364 (2018) 18–48

Table 5
Lengths of points of interest for the circular cylinder (Re = 40). This table follows the notation 
used in the literature: � = dx − a+

x , a = c+
x − a+

x , b = c+
y − c−

y , and θ is the angular coordinate 
of b+ . The coefficient λ represents the size ratio between the cylinder and the tank height (i.e.
the height of the computational domain). Both direct and linear method gives the same result 
up to presented precision.

Data soucre λ �/d a/d b/d θ/◦

Coutanceau and Bouard [21]* 0.024 2.04 0.73 0.58 —
0 2.13 0.76 0.59 53.5

Linnick and Fasel [22] 0.023 2.28 0.72 0.60 53.6
Calhoun [23] — 2.18 — — 54.2
Le et al. [24] — 2.22 — — 53.6
Taira and Colonius [25] 1/60 2.30 0.73 0.60 53.7
Berthelsen and Faltinsen [26] — 2.29 0.72 0.60 53.9
present (direct/linear method) 1/30 2.27 0.72 0.59 53.1

Table 6
Coordinates of points of interest for the elliptic cylinder (Re = 20). Both direct and linear 
method gives the same result up to presented precision.

a−/d a+/d b−
θ /◦ b+

θ /◦ c−/d c+/d d/d(−0.11
0.08

) (
0.11

−0.06

)
0.3 178.7

(
0.78

−0.33

) (
0.65
0.33

) (
1.97

−0.02

)

Table 7
Drag coefficients around the circular cylinder (Re = 40). Lift coeffi-
cients have been checked below 10−8 for the present study. Both 
direct and linear method gives the same result up to presented 
precision.

Data source CD p CDν CD

Tritton [27]* 1.57
Linnick and Fasel [22] 1.54
Calhoun [23] 1.62
Le et al. [24] 1.56
Taira and Colonius [25] 1.54
Berthelsen and Faltinsen [26] 1.59
present (direct/linear method) 1.026 0.533 1.559

Table 8
Drag and lift coefficients around the elliptic cylinder inclined at 80◦ (Re = 20). Both direct and 
linear method gives the same result up to presented precision.

Data source CD p CDν CD CL p CLν CL

D’alessio and Dennis [28] 2.116 0.256
Dennis and Young [29] 2.089 0.255
Yoon et al. [20] 2.102 0.252
present (direct/linear method) 1.864 0.266 2.130 0.303 −0.057 0.246

8. Conclusions

We studied the size of the discretization stencil of the two Finite-Difference Ghost-Fluid Immersed Boundary methods 
defined in [3] and [4], that we called the linear and the direct method, respectively. We showed that the stencil size 
increases as cells become more and more rectangular, i.e. the aspect ratio of the cell increases, and we also showed that 
the direct method may become ill posed on rectangular cells. We proposed the Ghost Node Shifting Method to reduce the 
stencil size of any rectangular cell to the case of square cells, which also ensure the direct method to be well posed. We 
also showed that only the direct method is able to keep a stencil size of 1 while providing a second-order limiting behavior 
method with Dirichlet boundary conditions, and first-order limiting behavior method with Neumann boundary conditions.

We carried out numerical simulations demonstrating that shifted methods where able to achieve the desired limiting 
behavior, given an appropriate stencil size, see Table 2 for details. Simulations also showed that error levels of shifted 
methods are at least as low as error levels of original methods, and that the shifted direct method has less or the same 
error levels that the shifted linear method.

We also applied the shifted methods to the pressure-correction method to solve the incompressible Navier–Stokes prob-
lem with immersed boundaries. An emphasis has been given at each step of the pressure-correction method to produce a 
coherent solution with respect to the immersed boundaries: we showed that an additional extrapolation of the velocity field 
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Fig. 26. Normalized pressure profile C p around the cylinder in the �′ coordinate frame.

is necessary due to the nonlinear term. We were able to produce a method with a compact stencil, i.e. a stencil size is 1. 
Numerical simulation showed a second-order limiting behavior on the velocity and a first-to-second-order limiting behavior 
on the pressure. Finally we were able to perform numerical simulations of the flow around circular and elliptic cylinders 
with coherent results with respect to the literature.

Future works include applications of this method to other problems, studies of higher order discretization, in which the 
hollow case problem may become more cumbersome as interpolation stencil increases. An other work is therefore to find a 
robust handling of the hollow case problem. Finally, a customization of the linear system solver, such as performed by Coco 
and Russo [4] on multi-grid solvers, would improve the performances of the method on very large problems.
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Appendix A. Discrete operators for the incompressible Navier–Stokes problem

Let’s give a closer look to the discretization of Eq. (49)–(51) on �i . For the sake of readability, we use an intuitive notation 
of indexes, e.g. C = (i, j) (center), L = (i − 1, j) (left), etc. Depending which nodes are considered the exact definition 
changes; it is given in Fig. A.27.

In the prediction step Eq. (49a), the diffusion term −ν�u∗ discretizes as in Sect. 2 on the face nodes, and becomes the 
matrix product −νLU∗

(LU∗)C = U∗
L − U∗

C

h2
x

+ U∗
R − U∗

C

h2
x

+ U∗
B − U∗

C

h2
y

+ U∗
T − U∗

C

h2
y

+ O(h2) , ∀C ∈ C x
i , (A.1a)

(LV ∗)C = V ∗
B − V ∗

C

h2
y

+ V ∗
T − V ∗

C

h2
y

+ V ∗
L − V ∗

C

h2
x

+ V ∗
R − V ∗

C

h2
x

+ O(h2) , ∀C ∈ C y
i . (A.1b)

Just as in Sect. 2, some U∗
L , U∗

R, U∗
B, U∗

T , and some V ∗
L , V ∗

R, V ∗
B, V ∗

T correspond to ghost nodes, and a boundary condition 
treatment must be addressed. The advection term ∇·(u∗ ⊗ un) discretizes into the matrix product A(Un)U∗ combining 
second-order, centered interpolations and finite-differences
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Fig. A.27. Relative node position used in Eq. (A.2a), (A.1a) (left), in Eq. (A.5) (center), and in Eq. (A.2b), (A.1b) (right).

(
A(Un)U∗)

C = − Un
L + Un

C

4hx
U∗

L + Un
R + Un

C

4hx
U∗

R

+
(

− Un
L + Un

C

4hx
+ Un

R + Un
C

4hx
− V n

BL + V n
BR

4hy
+ V n

TL + V n
TR

4hy

)
U∗

C

+ − V n
BL + V n

BR

4hy
U∗

B + V n
TL + V n

TR

4hy
U∗

T + O(h2) ,

∀C ∈ C x
i , (A.2a)

(
A(Un)U∗)

C = − Un
BL + Un

TL

4hx
V ∗

L + Un
BR + Un

TR

4hx
V ∗

R

+
(

− Un
BL + Un

TL

4hx
+ Un

BR + Un
TR

4hx
− V n

B + V n
C

4hy
+ V n

T + V n
C

4hy

)
V ∗

C

+ − V n
B + V n

C

4hy
V ∗

B + V n
T + V n

C

4hy
V ∗

T + O(h2) ,

∀C ∈ C y
i . (A.2b)

Here again some U∗
L , U∗

R, U∗
B, U∗

T , and some V ∗
L , V ∗

R, V ∗
B, V ∗

T correspond to ghost nodes, but also some Un
L , Un

R, Un
B, Un

T , Un
BL , 

Un
TL , Un

BR , Un
TR , and some V n

L , V n
R, V n

B, V n
T , V n

BL , V n
TL , V n

BR , V n
TR does not correspond to inner nodes. Taking the assumption of 

Sect. 2.3 that the immersed boundary is not too hollow, none of theses values correspond to outer nodes and it is sufficient 
that Un is being defined over C xy

ig . The pressure gradient term −∇pn discretizes into the matrix product −GPn using 
second-order centered finite-differences

(GPn)i+ 1
2 , j = Pn

i+1, j − Pn
i, j

hx
+ O(h2) , ∀(i, j) ∈ C x

i , (A.3a)

(GPn)i, j+ 1
2

= Pn
i, j+1 − Pn

i, j

hy
+ O(h2) , ∀(i, j) ∈ C y

i , (A.3b)

which requires that Pn is defined over Ci and some parts of C g to be defined. More precisely, Pn must be defined on ghost 
cell nodes surrounded by a inner face node. In the correction step Eq. (51a), the right-hand side ∇·u∗ discretizes into the 
matrix product DU∗ using second-order, centered finite-differences

(DU∗)i, j =
U∗

i+ 1
2 , j

− U∗
i− 1

2 , j

hx
+

V ∗
i, j+ 1

2
− V ∗

i, j− 1
2

hy
+ O(h2) , ∀(i, j) ∈ Ci . (A.4)

The right-hand side is always defined over Ci as U∗ is solved over C xy
ig Eq. (52a). Finally the left-hand side ht�φ discretizes 

just as in Sect. 2 into the matrix product ht L� + O(h2)

(L�)C = �L − �C

h2
x

+ �R − �C

h2
x

+ �B − �C

h2
y

+ �T − �C

h2
y

+ O(h2) , ∀(i, j) ∈ Ci . (A.5)

Here again some �L, �R, �B, �T correspond to ghost nodes, and a boundary condition treatment must be addressed.

Appendix B. Detailed parameters of used linear system solvers

The following parameters have been used for the hypre preconditioners anytime they have been used:
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SMG preconditioner (all cases)

RelChange 1
ZeroGuess set

NumPreRelax 1
NumPostRelax 1

BoomerAMG preconditioner (flower-shaped interface with Dirichlet boundary conditions)

StrongThreshold 0.25
CoarsenType 6, Falgout coarsening

AggNumLevels 1
RelaxType 6, hybrid symmetric Gauss–Seidel or SSOR

InterpType 0, classical modified interpolation

BoomerAMG preconditioner (circular interface with Neumann boundary conditions)

StrongThreshold 0.025
CoarsenType 10, HMIS coarsening

AggNumLevels 1
RelaxType 6, hybrid symmetric Gauss–Seidel or SSOR

InterpType 0, classical modified interpolation
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We present in this paper a numerical scheme for incompressible Navier–Stokes equations
with open and traction boundary conditions, in the framework of pressure-correction
methods. A new way to enforce this type of boundary condition is proposed and provides
higher pressure and velocity convergence rates in space and time than found in the present
state of the art. We illustrate this result by computing some numerical and physical tests.
In particular, we establish reference solutions of a laminar flow in a geometry where a
bifurcation takes place and of the unsteady flow around a square cylinder.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The main difficulty in obtaining the numerical solution of the incompressible Navier–Stokes equations, apart from the
treatment of non-linearities, lies in the Stokes stage and specifically in the determination of the pressure field which will
ensure a solenoidal velocity field. The question is how to uncouple the velocity and the pressure operators to efficiently reach
an accurate solution to the unsteady Stokes problem, without degrading the predefined stability properties of the chosen
scheme for the Navier–Stokes equations.

Historically, the first idea was proposed by Uzawa [1,2] and applied for numerical approximations with several methods
[3,4]. It is a safe and efficient method for the numerical approximation of the Stokes problem. In complex geometries or
three-dimensional domains, this method turns out to be inappropriate for its computational time cost which becomes very
high. A different method is to uncouple the pressure from the velocity by means of a time splitting scheme that significantly
reduces the computational cost. A large number of theoretical and numerical works have been published that discuss the
accuracy and the stability properties of such methods. The most widespread methods are pressure-correction schemes. They
were first introduced by Chorin-Temam [5,6], and improved by Goda (the standard incremental scheme) in [7], and later by
Timmermans in [8] (the rotational incremental scheme). They require the solution of two sub-steps for each time step: the
pressure is treated explicitly in the first one, and is corrected in the second one by projecting the predicted velocity onto an
ad hoc space. The governing equation on the pressure or the pressure increment is a Poisson equation derived from the
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momentum equation by requiring incompressibility. In [9,10], the authors proved the reliability of such approaches from the
stability and the convergence rate point of view. A series of numerical issues related to the analysis and implementation of
fractional step methods for incompressible flows are addressed in the review paper of Guermond et al. [11]. In this reference,
the authors describe the state of the art for both theoretical and numerical results related to the time splitting approach. One
emerging conclusion points out that time splitting can be a high order alternative to solve the unsteady Stokes problem
when the velocity boundary condition is of the Dirichlet type.

However, in many applications such as free surface problems and channel flows, one also has to deal with an outlet
boundary condition on all or part of the boundary, on which the applied numerical condition should not disturb upstream
flow. A large variety of this kind of boundary condition exists [12,13], such as the non-reflecting outlet boundary condition
(and its adaptations) derived from a wave equation, which is suited to wake and jet flow with moderate and high Reynolds
number [14–19]. Hereafter we will present some improvements on the open or traction boundary condition which is effi-
cient for low Reynolds number and fluid–structure interactions [20–22]. The traction boundary condition was successfully
used to compute various flows such as those around a circular cylinder, over a backward facing step and in a bifurcated tube
[20]. Bruneau [23] proposes an evolution of the traction boundary condition involving inertial terms. Hasan [24] proposes, in
the computation of incompressible flow around rigid bodies, to extrapolate velocity on the outflow boundary, pressure being
obtained through traction boundary conditions.

In the case of open or traction boundary conditions, several questions remain open especially when the pressure-correc-
tion version is considered as mentioned in [10]. Indeed, Guermond et al. [11], have proven that only spatial and time con-
vergence rates between O(Dx + Dt) and O(Dx3/2 + Dt3/2) on the velocity and O(Dx1/2 + Dt1/2) on the pressure are to be
expected with the standard incremental scheme, and between O(Dx + Dt) and O(Dx3/2 + Dt3/2) on the velocity and pressure
for the rotational incremental scheme. Févrière [25] combines the penalty and projection methods to improve error levels of
a manufactured case with open boundary conditions, but without improvement of the convergence rate. Finally, Liu [20],
with a pressure Poisson equation formulation, proposes a new implementation of the open and traction boundary condi-
tions. He proves unconditional stability with a first order time scheme and shows second order numerical convergence rate
on velocity and pressure.

The aim of this paper is to propose a numerical scheme for the incompressible Navier–Stokes equations with open and
traction boundary conditions, using the pressure-correction version of the time splitting methods. A new way to enforce this
type of boundary condition is proposed and improves the order of convergence for both pressure and velocity. In the second
part of this article we will describe the governing equations, and, in the third part, the pressure-correction schemes for open
boundary conditions. In the fourth part, we will present the improvements we made on the numerical implementation of the
traction and open boundary conditions. In a fifth section we will illustrate numerically the proposed method with two man-
ufactured cases and two physical cases.

First of all we specify some notations. Let us consider a Lipschitz domain X � Rd; ðd ¼ 2 or 3Þ, the generic point of X is
denoted x. The classical Lebesgue space of square integrable functions L2(X) is endowed with the inner product:

ð/;wÞ ¼
Z

X
/w dx;

and the norm

kwkL2ðXÞ ¼
Z

X
jwðxÞj2

� �1
2

:

We break the time interval [0, t⁄] into N subdivisions of length Dt ¼ t�
N, called the time step, and define tn = nDt, for any n,

0 6 n 6 N. Let u0,u1, . . . ,uN be some sequence of functions in E = L2. We denote this sequence by uDt, and we define the fol-
lowing discrete norm

kuDtkl2ðEÞ ¼ Dt
XN

k¼0

kukk2
E

 !1
2

: ð1:1Þ

In practice the following error estimator can be used

kuk2
Eðt�Þ ¼ kuð�; t�ÞkE: ð1:2Þ

Finally, bold Latin letters like u, w, f, etc., indicate vector valued quantities, while capitals (e.g. X, etc.) are functional sets
involving vector fields.

2. Governing equations

Let X be a regular bounded domain in Rd with n the unit normal to the boundary C = @X oriented outward. We suppose
that C is partitioned into two portions CD and CN.

Our study consists, for a given finite time interval [0, t⁄] in computing velocity u = u(x, t) and pressure p = p(x, t) fields
satisfying:
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q@tu� lDuþ $p ¼ f in X� ½0; t��; ð2:3Þ

$ � u ¼ 0 in X� ½0; t��; ð2:4Þ

u ¼ g on CD � ½0; t��; ð2:5Þ

lru� pIdð Þn ¼ t on CN � ½0; t��; ð2:6Þ

where q and l are respectively the density and the dynamic viscosity of the flow. The body force f = f(x, t), the pseudo-
constraint t = t(x, t) and the boundary condition g = g(x, t) are known. For sake of simplicity, we chose g = 0. Finally, the initial
state is characterised by a given u(.,0).

In some cases, the open or natural boundary condition (2.6) can be replaced by the traction boundary condition written as

l ruþruT
� �

� pId
� �

n ¼ t: ð2:7Þ

3. Pressure-correction schemes for open boundary condition

We shall compute two sequences (un)06n6N and (pn)06n6N in a recurrent way that approximate in some sense the quan-
tities (u(., tn))06n6N and (p(., tn))06n6N, solutions of the unsteady Stokes problem (2.3)–(2.6). Its semi-discrete version reads:

q
aunþ1 þ bun þ cun�1

Dt
� lDunþ1 þrpnþ1 ¼ f nþ1 in X; ð3:8Þ

r � unþ1 ¼ 0 in X; ð3:9Þ
unþ1 ¼ 0 on CD; ð3:10Þ
lrunþ1 � pnþ1Id
� �

n ¼ tnþ1 on CN : ð3:11Þ

Values of parameters a, b, c depend on the temporal scheme used. Namely:

� a = 1, b = �1, c = 0 for the first order Euler time scheme,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 for the second order Backward Difference Formulae time scheme.

Eqs. (3.8)–(3.11) are split into two subproblems. The first is the prediction diffusion problem that computes a prediction
velocity fields: find un+1/2 such that:

q
aunþ1=2 þ bun þ cun�1

Dt
� lDunþ1=2 þrpn ¼ f nþ1 in X; ð3:12Þ

unþ1=2 ¼ 0 on CD; ð3:13Þ
lrunþ1=2 � ~pnþ1Id
� �

n ¼ tnþ1 on CN: ð3:14Þ

In the last Eq. (3.14), the expression of ~pnþ1 depends on the considered time scheme. To ensure the expected order of the time
approximation, we propose two cases:

� a = 1, b = �1, c = 0 then ~pnþ1 ¼ pn,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 then ~pnþ1 ¼ 2pn � pn�1.

The second step is a pressure-continuity correction: find (un+1,pn+1) such that:

qa
Dt

unþ1 � unþ1=2� �
þrunþ1 ¼ 0 in X; ð3:15Þ

r � unþ1 ¼ 0 in X; ð3:16Þ

unþ1 � n ¼ 0 on CD; ð3:17Þ

B:C:nþ1 on CN: ð3:18Þ

and the pressure is upgraded via:

pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X: ð3:19Þ

The parameter v is used to switch between the standard incremental scheme and the rotational one:

� v = 0 for the standard incremental scheme,
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� v = 0.7 for the rotational incremental scheme1.

The second step is rewritten as a Poisson problem on un+1:

Dt
aq
r � runþ1 ¼ r � unþ1=2 in X; ð3:20Þ

@

@n
unþ1 ¼ 0 on CD; ð3:21Þ

B:C:nþ1 on CN; ð3:22Þ

completed by:

pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X; ð3:23Þ

unþ1 ¼ unþ1=2 � Dt
qa
runþ1 in X: ð3:24Þ

The main result of this contribution lies in the definition of B.C.n+1 in (3.22). As mentioned in [22] the ‘‘natural choice’’ which
consists in considering un+1 equals zero on CN leads to a kind of numerical locking for v = 0 since the boundary condition on
the pressure increment causes the pressure on the limit to be equal to its initial value. The convergence of the algorithm is
low and slow. To circumvent this difficulty the authors suggest to use the rotational incremental version. In the present work
we propose an alternative improving the accuracy for the standard incremental version while remaining compatible with the
rotational one. Indeed, the boundary condition on u can be induced by derivation of the Helmholtz–Hodge decomposition of
the un+1/2 (3.15). This approach has already been followed by Brazza in [17] and Kirpatrick in [26] for other kinds of outlet
boundary conditions (non-reflecting or Neumann).

4. Improvement of the pressure boundary conditions

For the sake of simplicity we choose X to be a square and we fix CN at its right boundary. The starting point of our ap-
proach is the first component of Eq. (3.15) that we derive on x1:

� Dt
aq

@x2
1
unþ1 ¼ @x1 unþ1

x1
� @x1 u

nþ1
2

x1
: ð4:25Þ

We project Eqs. (3.11) and (3.14) on direction x1:

l@x1 unþ1
x1
� pnþ1 ¼ tnþ1

x1
; ð4:26Þ

l@x1 u
nþ1

2
x1
� ~pnþ1 ¼ tnþ1

x1
; ð4:27Þ

and combining those three equations, one can verify that (4.25) is equivalent to:

� Dt
aq

@x2
1
unþ1 ¼ 1

l
ðpnþ1 � ~pnþ1Þ: ð4:28Þ

Depending on the choice of the time splitting version and the time order scheme, pnþ1 � ~pnþ1 can be replaced by its approx-
imation expression using un+1 and the divergence of the predicted velocity. For the first order time scheme, we easily derive
the following boundary conditions:

Dt
aq

@x2
1
þ 1

l

� �
unþ1 ¼ vr � unþ1

2: ð4:29Þ

Or, for a second order scheme:

Dt
aq

@x2
1
þ 1

l

� �
unþ1 ¼ un

l
þ vr � unþ1

2 � un�1
2

� �
: ð4:30Þ

Subtracting (4.29) or (4.30) in (3.20) leads to a version that is easier to implement:

� First-order open boundary condition (OBC1):

Dt
aq

@x2
2
� 1

l

� �
unþ1 ¼ ð1� vÞr � unþ1

2: ð4:31Þ

1 Ideally, v = 1 but as Guermond proved in [22], for stability issues, v is necessarily strictly less than 2l/d.
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� Second-order open boundary condition (OBC2):

Dt
aq

@x2
2
� 1

l

� �
unþ1 ¼ ð1� vÞr � unþ1

2 �un

l
þ vr � un�1

2: ð4:32Þ

In summary, our approach differs from the usual one by the definition of the boundary condition on CN in the correction
step.

We end this section by describing the extension of (4.31) and (4.32) to a more general partition of the boundary oX.

4.1. Generalisation of the boundary condition

Extension to a more general definition of CN requires new notations to be introduced. Let us denote by D(u) = (ru +ruT)/
2, the rate of deformation tensor and r(u,p) = �pId + 2lD the stress one. n and s are respectively the units normal to the
boundary oriented outward and the associated unit tangent vector.

The traction boundary condition r(u,p): n = t projected on n and s is written:

2lDðunþ1Þ : n � n� pnþ1 ¼ tnþ1 � n; ð4:33Þ

2lDðunþ1Þ : n � s: ¼ tnþ1 � s: ð4:34Þ

Applying D to (3.15) gives us:

Dðunþ1Þ � D unþ1
2

� �
¼ � Dt

aq
D runþ1
� �

: ð4:35Þ

Denoting L(un+1) = D(run+1), we have:

Dðunþ1Þ : n � n� D unþ1
2

� �
: n � n ¼ � Dt

aq
Lðunþ1Þ : n � n: ð4:36Þ

Using (4.33) and (3.23) we obtain:

� Dt
aq

Lðunþ1Þ : n � n ¼ tnþ1 � nþ pn þunþ1 � vlr � unþ1
2

2l
� D unþ1

2

� �
: n � n:

Thus, for the first order boundary condition, we can impose on ðunþ1
2;unþ1Þ:

2lD unþ1
2

� �
: n � n ¼ tnþ1 � nþ pn; ð4:37Þ

2lD unþ1
2

� �
: n � s ¼ tnþ1 � s; ð4:38Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l
¼ v

2
r � unþ1

2: ð4:39Þ

Or, to have second order scheme:

2lD unþ1
2

� �
: n � n ¼ tnþ1 � nþ 2pn � pn�1; ð4:40Þ

2lD unþ1
2

� �
: n � t ¼ tnþ1 � s; ð4:41Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l
¼ un

2l
þ v

2
r � unþ1

2 � un�1
2

� �
: ð4:42Þ

To conclude this section, the full time-splitting algorithm in the presence of traction boundary conditions reads:
Prediction step. Find un+1/2 such that:

q
aunþ1=2 þ bun þ cun�1

Dt
� lDunþ1=2 þrpn ¼ f nþ1; in X; ð4:43Þ

unþ1=2 ¼ 0; on CD; ð4:44Þ

l runþ1=2 þ ðrunþ1=2ÞT
� �

� ~pnþ1Id
� �

n ¼ tnþ1 on CN: ð4:45Þ
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Correction pressure-continuity step. Find (un+1,pn+1) such that:

Dt
aq
r � runþ1 ¼ r � unþ1=2 in X; ð4:46Þ

@

@n
unþ1 ¼ 0 on CD; ð4:47Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l ¼ v
2
r � unþ1

2 þ c
un

l � vr � un�1
2

� �
; on CN : ð4:48Þ

Completed by:

pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X; ð4:49Þ

unþ1 ¼ unþ1=2 � Dt
qa
runþ1 in X: ð4:50Þ

The choice of v permits us to switch from the standard incremental scheme (v = 0) to the rotational form v < 2l
d

� �
while the

values of a, b, c move from the first time order to the second:

� a = 1, b = �1, c = 0 for first order Euler time scheme; then ~pnþ1 ¼ pn,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 for second order Backward Difference Formulae time scheme; then ~pnþ1 ¼ 2pn � pn�1.

5. Numerical experiments

We start this section by giving a brief description of the space discretisation and tools for the numerical simulations. Then,
numerical experiments involving the proposed boundary conditions are separated into verification cases on manufactured
solutions of the Stokes equations, and validation on physical cases governed by the Navier–Stokes equations.

5.1. Spatial discretisation and linear solvers

Spatial discretisation is based on the finite volume method. To avoid the well known spurious modes phenomena, the
correction step uses the stable finite volume staggered grid of the Marker and Cells type [27]. In our implementation, pres-
sure unknowns are associated to the cell vertices whereas velocity components are face centred. The approximation of the
prediction-diffusion of the Stokes problem step uses a centred scheme of second order to compute the predicted velocity.
The approach adopted for the treatment of the Navier–Stokes non-linear term (u�r)u involved in the material derivative
of the velocity consists in linearising it by ((2un � un�1).r)un+1 and applying a second-order centred scheme.

In the following simulations, the proposed boundary condition (4.48), which contains high order derivatives in the nor-
mal direction of the boundary, is treated by subtracting it in (3.20) which leads to a formulation involving only tangential
derivatives. As pressure unknowns are associated to the cell vertices, these derivatives are trivial to discretise by a sec-
ond-order centred scheme. This approach would be valid for any orthogonal curvilinear coordinate system.

All the computations are made using the parallel version of a Navier–Stokes solver based on the block-structured mesh
partitioner described in [28]. Finally and in order to solve the linear systems we are using:

� For the prediction step, the iterative BiCGStab method with a point Jacobi preconditioner of the HYPRE library [29].
� For the correction step, the multifrontal sparse direct solver MUMPS [30] for manufactured cases or the GMRES method

with a semi-coarsening geometric multigrid preconditioner [31,32] of the HYPRE library for physical cases.

5.2. Numerical results for the Stokes problem

To assess the error convergence rate of the methods in space and time, we consider two manufactured test cases with
q = 1 and l = 1. The domain is chosen to be X = [�1;1]2 and we enforce the traction boundary condition on the right part
of the box and a Dirichlet boundary condition everywhere else. Exact solutions for uex ¼ ðuex

x1
;uex

x2
Þ and pex are:

� For the homogeneous case (t = 0):

uex
x1
¼ sinðx1Þ sinðx2Þ cosð2pxtÞ;

uex
x2
¼ cosðx1Þ cosðx2Þ cosð2pxtÞ;

pex ¼ �2 cosð1Þ sin 2ðx1 � 1Þ � x2ð Þ cosð2pxtÞ:
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� For the non-homogeneous case, we take the same problem as [20]:

uex
x1
¼ cos2 px1

4

� �
sin

px2

2

� �
cosð2pxtÞ;

uex
x2
¼ � cos2 px2

4

� �
sin

px1

2

� �
cosð2pxtÞ;

pex ¼ cos
px1

4

� �
sin

px2

4

� �
cosð2pxtÞ:

We present hereafter a convergence study with a traction boundary condition, homogeneous or not. The error estimator
kuk2

L2ðt�Þ defined in (1.2) is used.

5.2.1. Error convergence rate in space
Most of the research effort made on pressure-correction methods deals with the time convergence rate, since optimal

space one can be reached in presence of Dirichlet boundary conditions on velocity. Nevertheless, in open or traction bound-
ary conditions, spatial convergence rates are limited to Dx for velocity and O(Dx1/2) for pressure. The only known way to
overcome this difficulty in the framework of pressure-correction methods is to switch to the rotational formulation.

In order to study the spatial splitting error we carried out the first numerical experiment with x = 0. The time step is fixed
at Dt = 10�3 and we run the algorithm for different values of Dx. Stationary tolerance is set to 10�12. As long as we attempt to
approximate analytical solutions by a second order scheme, we expect that the errors decay like Dx2. The representative
curves of Figs. 1 and 2 (on the left) show that the convergence rate of the error on the velocity and the pressure are
O(Dx2). We obtain exactly the same result with the first and the second order (in time) versions.

Repeating these tests with the rotational scheme, we obtain a O(Dx2) convergence rate of the error on velocity and pres-
sure whatever the method used (see Figs. 1 and 2 on the right).

As a conclusion on the spatial convergence rate, we can say that the proposed method improves the standard incremental
scheme from O(Dx) to O(Dx2) for the velocity and from O(Dx1/2) to O(Dx2) for pressure, while remaining compatible with the
rotational scheme. The question now is to know if the numerical locking of the incremental scheme also observed for the
error convergence rate in time is overcome, and if the method is still compatible with the rotational formulation.

5.2.2. Error convergence rate in time
To study the time splitting error, we consider the unsteady case x = 1. In Figs. 3 and 4 we plotted for Dx fixed at 1/256 and

for a range of time steps 10�4
6 Dt 6 10�1 the errors (1.2) at t = 2. With the first order proposed boundary condition, the

convergence rate of the error on the velocity and the pressure are around O(Dt). While with the second order boundary con-
dition we ensure a convergence rate of O(Dt2), for the velocity and between O(Dt3/2) and O(Dt2) for pressure. Thus, the con-
vergence rate in the presence of an open or traction boundary condition is now brought to the level observed with the
Dirichlet boundary condition.

We repeated these tests with the rotational scheme. As one can see in Figs. 5 and 6, for the standard boundary condition
(u = 0 on CN) the convergence rate of the error on the velocity and the pressure is between O(D t3/2) and O(Dt2), which are
the same as [22]. With the proposed first order boundary condition, the convergence rate of the error on the velocity and the
pressure is around O(Dt). And finally, with the second order boundary condition we can obtain a clear convergence rate of
the error on the velocity of O(Dt2) and on the pressure of O(Dt2).

Fig. 1. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt = 10�3 for the steady homogeneous
case.
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Remark 1. In Figs. 5 and 6 (right) there is a saturation of the time error by space error at small time step due to space
discretisation being too coarse. This behaviour is illustrated in Fig. 7 which represents the time convergence for two meshes.
We can see that the finest the mesh is the more saturation is postponed to a smaller time step.

Fig. 2. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt = 10�3 for the steady
non-homogeneous case.

Fig. 3. Time convergence rates with the standard incremental scheme at t = 2 with Dx = 1/256 for the unsteady homogeneous case. Velocity (left) and
pressure (right).

Fig. 4. Time convergence rates with the standard incremental scheme at t = 2 with Dx = 1/256 for the unsteady non-homogeneous case. Velocity (left) and
pressure (right).
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Remark 2. With Dirichlet boundary conditions on all boundaries, rotational scheme improves error level, compared to stan-
dard incremental one, while convergence order remains the same. With the standard traction boundary conditions (u = 0 on
CN), we can note that rotational scheme improves convergence order. With the proposed method, a more usual effect of the
rotational methods which improves only error levels is noted. This can be verified in Figs. 8 and 9.

Fig. 5. Time convergence rates with the rotational incremental scheme at t = 2 with Dx = 1/256 for the unsteady homogeneous case. Velocity (left) and
pressure (right).

Fig. 6. Time convergence rates with the rotational incremental scheme at t = 2 with Dx = 1/256 for the unsteady non-homogeneous case. Velocity (left) and
pressure (right).

Fig. 7. Time convergence rates for the unsteady homogeneous case (left) and non-homogeneous case (right) with the rotational incremental scheme and
OBD2 at t = 2 with Dx = 1/128, Dx = 1/256.
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Remark 3. A similar study was carried out with the open boundary condition (homogeneous or not); the norm kuDtkl2ðEÞ (see
(1.1)) was also used. Since the results lead to the same conclusions, they are not shown here.

Fig. 8. Comparison between convergence rates with the rotational incremental scheme and the standard incremental scheme at t = 2 with Dx = 1/256 for
the unsteady homogeneous case. First order (left) and second order (right) boundary conditions.

Fig. 9. Comparison between convergence rates with the rotational incremental scheme and the standard incremental scheme at t = 2 with Dx = 1/256 for
the unsteady homogeneous case. First order (left) and second order (right) boundary conditions.

Fig. 10. Steady state of the bifurcation case. Pressure and streamlines. Eddies are numbered with letters.
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As a conclusion on the error convergence rate in time, the proposed method improves orders of the standard incremental
scheme from O(Dt) to O(Dt2) for the velocity and from O(Dt1/2) to between O(Dt3/2) and O(Dt2) for pressure. It also slightly
improves the rotational scheme to a clear convergence rate of O(Dt2) for velocity and pressure.

5.3. Numerical results for the Navier–Stokes flows

The boundary conditions proposed are tested with two laminar incompressible physical problems: the steady flow in a
bifurcated tube proposed recently by [20] and the unsteady flow past a square section cylinder (see [24,33–36]). The rota-
tional scheme is used with second order time discretisation.

5.3.1. Flow in a bifurcated tube
We deal with the Navier–Stokes equation set on the domain shown in the Fig. 10:

X ¼ ½0;8� � ½�0:5; 0:5� n ½0;0:5� � ½�0:5;0� [ ½1:5;8� � ½�0:1;0:2�f g:

The inflow boundary at {x1 = 0m} is a Dirichlet one set to a Poiseuille flow with a unitary influx. The two outflow boundaries
at {x1 = 8m} are the proposed open boundary condition OBC2, the remaining boundaries being the no-slip condition. Initiali-
sation is made with u0 = 0 and p0 = 0.

Fig. 10 shows steady state for Re = 600 based on the height of the larger section (q = 1 kg m�3 and m = 1/600 m2 s�1). The
flow is composed by six eddies. An infinite series of Moffatt corner vortices (D,E,F) of increasingly smaller amplitude (see

Table 1
Details of some parameters in the bifurcated tube for different meshes.

Space step size (m) 0.02 0.01 0.005 0.0025 0.00125

Total kinetic energy (kg �m � s�2) 2.0142 � 10+00 2.0025 � 10+00 1.9965 � 10+00 1.9937 � 10+00 1.9923 � 10+00

Top outflux (m2 � s�1) 1.9803 � 10�01 1.9623 � 10�01 1.9505 � 10�01 1.9443 � 10�01 1.9410 � 10�01

Bottom outflux (m2 � s�1) 3.0117 � 10�01 3.0357 � 10�01 3.0490 � 10�01 3.0556 � 10�01 3.0589 � 10�01

Top charge drop (m3 � s�2) 4.2338 � 10�01 4.1251 � 10�01 4.0639 � 10�01 4.0309 � 10�01 4.0131 � 10�01

Bottom charge drop (m3 � s�2) 4.2223 � 10�01 4.1189 � 10�01 4.0607 � 10�01 4.0292 � 10�01 4.0123 � 10�01

Table 2
Extrapolation of some parameters in the bifurcated tube.

Extrapolated value Extrapolation order

Total kinetic energy (kg �m � s�2) 1.9909 � 10+00 1.07
Top outflux (m2 � s�1) 1.9374 � 10�01 0.92
Bottom outflux (m2 � s�1) 3.0623 � 10�01 1.01
Top charge drop (m3 � s�2) 3.9924 � 10�01 0.89
Bottom charge drop (m3 � s�2) 3.9925 � 10�01 0.89

Fig. 11. Spatial convergence rates based on the extrapolation.
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[37]) appears in the lower left corner due to the sudden expansion of the section. Three other recirculations (A,B,C) are at-
tached to the horizontal walls due to the contraction of the section. The outflux are equal to 0.194 m2 s�1 on top and
0.306 m2 s�1 on bottom, which are qualitatively the same as in [20] where an open boundary condition has also been used.

In order to propose a reference solution, we compute three other parameters characterising the flow:

� The total kinetic energy

ec ¼
Z

X

1
2
qu2 dx:

� The outflux

Q ¼
Z

R
u � n dl:

� The charge drops

Dh ¼ 1
2

Z
L
ðu � nÞ2 dl�

Z
R
ðu � nÞ2 dl

� �
þ 1

q

Z
L

p dl�
Z

R
p dl

� �
;

where L is the left boundary condition, and R the upper or lower right one.

Richardson extrapolation framework [38,39] is used to compute the convergence rates and extrapolated values of these
parameters computed on four meshes of step size h1, h2, h3 and h4 verifying consecutive ratio equal to two. The convergence
rate a and the extrapolated value fext are given by:

a ¼
ln

fh1
�fh3

fh2
�fh4

� �
ln h1

h2

� � ; ð5:51Þ

fext ¼
h3
h4

� �a
fh4 � fh3

h3
h4

� �a
� 1

: ð5:52Þ

Table 3
Details of eddies characteristics in the bifurcated tube for different meshes.

Dx(m) 0.02 0.01 0.005 0.0025 0.00125

Eddy A x 1.2512 � 10+0 1.2534 � 10+0 1.2574 � 10+0 1.2594 � 10+0 1.2606 � 10+0

Eddy A y 4.7816 � 10�1 4.7686 � 10�1 4.7756 � 10�1 4.7362 � 10�1 4.7306 � 10�1

Eddy A x 5.6036 � 10�1 6.0344 � 10�1 6.8107 � 10�1 7.0257 � 10�1 7.1643 � 10�1

Point 1 x 1.2000 � 10+0 1.1200 � 10+0 1.0850 � 10+0 1.0675 � 10+0 1.0600 � 10+0

Point 2 x 1.3000 � 10+0 1.3400 � 10+0 1.3600 � 10+0 1.3725 � 10+0 1.3763 � 10+0

Eddy B x 1.6449 � 10+0 1.6258 � 10+0 1.6234 � 10+0 1.6225 � 10+0 1.6219 � 10+0

Eddy B y 2.2609 � 10�1 2.2516 � 10�1 2.2237 � 10�1 2.2070 � 10�1 2.1971 � 10�1

Eddy B x �8.4218 � 10+0 �1.0078 � 10+1 �9.1216 � 10+0 �8.5552 � 10+0 �8.2187 � 10+0

Point 3 x 1.7600 � 10+0 1.8100 � 10+0 1.8200 � 10+0 1.8175 � 10+0 1.8163 � 10+0

Point 4 y 1.0000 � 10�1 1.0000 � 10�1 1.0000 � 10�1 1.0000 � 10�1 9.8750 � 10�2

Eddy C x 2.1183 � 10+0 2.0945 � 10+0 2.0844 � 10+0 2.0803 � 10+0 2.0781 � 10+0

Eddy C y �2.1844 � 10�1 �2.1645 � 10�1 �2.1498 � 10�1 �2.1406 � 10�1 �2.1336 � 10�1

Eddy C x 1.0540 � 10+1 1.0180 � 10+1 9.9620 � 10+0 9.8574 � 10+0 9.8142 � 10+0

Point 5 x 2.7800 � 10+0 2.7900 � 10+0 2.7950 � 10+0 2.7975 � 10+0 2.7975 � 10+0

Eddy D x 1.1225 � 10+0 1.1340 � 10+0 1.1384 � 10+0 1.1402 � 10+0 1.1410 � 10+0

Eddy D y �2.9328 � 10�1 �2.9682 � 10�1 �2.9818 � 10�1 �2.9874 � 10�1 �2.9899 � 10�1

Eddy D x �2.7661 � 10+0 �2.7885 � 10+0 �2.7943 � 10+0 �2.7949 � 10+0 �2.7946 � 10+0

Point 6 x 1.4400 � 10+0 1.4700 � 10+0 1.4700 � 10+0 1.4725 � 10+0 1.4750 � 10+0

Eddy E x 5.6857 � 10�1 5.6466 � 10�1 5.6229 � 10�1 5.6094 � 10�1 5.6023 � 10�1

Eddy E y �4.4269 � 10�1 �4.4493 � 10�1 �4.4646 � 10�1 �4.4729 � 10�1 �4.4723 � 10�1

Eddy E x 2.9552 � 10�2 2.6039 � 10�2 2.4409 � 10�2 2.3540 � 10�2 2.3088 � 10�2

Point 7 y �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1

Point 8 x 6.6000 � 10�1 6.6000 � 10�1 6.6500 � 10�1 6.6500 � 10�1 6.6375 � 10�1

Eddy F x � � � 5.0269 � 10�1 5.0316 � 10�1

Eddy F y � � � �4.9732 � 10�1 �4.9684 � 10�1

Eddy F x � � � �6.5702 � 10�5 �1.3642 � 10�4

Point 9 y � � � �4.9500 � 10�1 �4.9375 � 10�1

Point 10 x � � � 5.0500 � 10�1 5.0625 � 10�1
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Fig. 12. Vorticity contours during one period.

Table 4
Comparison of computed flow metrics.

References St Average CD r.m.s CL

Present study, X1, 6H 0.143235 1.461515 0.153056
Present study, X2, 10H 0.146412 1.474955 0.144166
Present study, X3, 20H 0.147131 1.478540 0.142870
Present study, X4, 30H 0.147167 1.478745 0.142652

Sohankar [34] 0.146 1.46 0.139
Pavlov [36] 0.150 1.51 0.137
Hasan [24] 0.144 1.40 -
Pontaza [33] 0.140 1.48 0.141
Okajima [35] (Exp) 0.143 - -

Table 5
Time convergence.

Time step (s) 2.4 � 10�2 1.2 � 10�2 6.0 � 10�3 3.0 � 10�3 Extrapolated value Extrapolation order

Strouhal number 0.147239 0.147187 0.147170 0.147167 0.147166 1.79
Average drag coefficient 1.479280 1.478870 1.478765 1.478745 1.478739 2.04
r.m.s lift coefficient 0.143079 0.142748 0.142667 0.142652 0.142647 2.10
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The values for five meshes are detailed in Table 1 and the convergence rates computed with the four finest meshes are in
Table 2. A first order space convergence rate is obtained, which is caused, we presume, by the singularity of the geometry
at the corners of the domain [40]. We verify on Fig. 11 that results are within the asymptotic convergence zone by plotting

Fig. 13. Time convergence rates based on the extrapolation.

Fig. 14. Instantaneous vorticity contours (left) and streamlines (right) for four meshes, from top to bottom: X1, X2, X3 and X4. In order to compare,
isovalues for vorticity contours are the same whatever the domain.
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the errors against the extrapolated solutions. Finally, we propose in Table 3 a detailed description of the eddies for five
meshes: position (x1,y2) and vorticity (x) at the center, and detachment and reattachment points coordinates.

5.3.2. Flow past a square section cylinder
We consider the two dimensional unsteady flow past a square cylinder studied by [34,36,24,33,35] with a normal inci-

dence and Re = 100. The Reynolds number is based on the free-stream velocity (u1 = 1 m s�1), the square width H = 1 m,
the density q = 1 kg m�3 and the viscosity m = 0.001 m2 s�1. We consider four computational domains where the distance be-
tween the outflow boundary condition and the cylinder is, respectively, 6H, 10H, 20H and 30H:

� X1 = [�10.5,6.5] � [�10.5,10.5]
� X2 = [�10.5,10.5] � [�10.5,10.5]
� X3 = [�10.5,20.5] � [�10.5,10.5]
� X4 = [�10.5,30.5] � [�10.5,10.5]

The inflow boundary at {x1 = �10.5 m} is a Dirichlet condition set to a constant horizontal flow, the outflow boundary at
{x1 = 6.5 m}, {x1 = 10.5 m}, {x1 = 20.5 m} or {x1 = 30.5 m} is the proposed open boundary condition OBC2. A symmetry condi-
tion is imposed on the upper and lower boundaries. No-slip condition is enforced on the square obstacle placed at
(x1,x2) = (0,0). The meshes have around two million points with a constant space step of 0.002 m in the sub-domain
[�2,4] � [�2,2]. Step size increases toward the boundaries. The initialisation of pressure is made with p0 = 0. To destabilise

Fig. 15. Comparison of instantaneous vorticity along the line y = 0 between X4 and the three other meshes.
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the solution, an unsymmetrical velocity field is initialised: for x2 > 0 u0 = (1.1,0) m and, for x2 < 0, u0 = (0.9,0) m. The compu-
tations are made with Dt = 0.003 s.

The various global parameters characterising the flow are defined as:

� The lift coefficient CL ¼
2Fx2
qu2
1H

� The drag coefficient CD ¼
2Fx1
qu2
1H

� The Strouhal number St ¼ fH
U1

where f is the shedding frequency. Fx1 and Fx2 are the sums of both pressure and viscous forces in the x1 and x2 direction
around the Cc boundary of the cylinder: ðFx1 ; Fx2 Þ ¼

R
Cc

r:n.
The result is a periodic Bénard-von Kármán vortex street shown on the Fig. 12. Values of the Strouhal number, the lift

coefficient and the drag coefficient are detailed in Table 4, and are in agreement with the literature.
For the last domain X4, we proceed to a time convergence study. Four time steps are chosen with a consecutive ratio of

two. A convergence order around two is measured (see Table 5), in agreement with the formal convergence of the methods.
We check on the Fig. 13 that the solutions are within the asymptotic convergence zone by plotting the errors against the
extrapolated solutions.

Figs. 14 and 15 show the influence of the size of the computational domain on the rotational and the streamlines at the
same phase (first time step just after sign change of the rotationnal at (x,y) = (1,0) m). As in [24], the position of the outflow
boundary condition does not induce distortion of the vortices nor disturb flow around the cylinder. Nevertheless, we can see
some distortions near the boundary condition, which reminds us that the open boundary condition is not a ‘‘universal’’ outlet
boundary condition. These discrepancies are spatially limited to the boundary as shown on the Fig. 15 which represents vor-
ticity profiles along the line y = 0.
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We propose an accurate and robust fourth-order curvature extension algorithm in a level 
set framework for the transport of the interface. The method is based on the Continuum 
Surface Force approach, and is shown to efficiently calculate surface tension forces for 
two-phase flows. In this framework, the accuracy of the algorithms mostly relies on the 
precise computation of the surface curvature which we propose to accomplish using a 
two-step algorithm: first by computing a reliable fourth-order curvature estimation from 
the level set function, and second by extending this curvature rigorously in the vicinity of 
the surface, following the Closest Point principle. The algorithm is easy to implement and 
to integrate into existing solvers, and can easily be extended to 3D. We propose a detailed 
analysis of the geometrical and numerical criteria responsible for the appearance of 
spurious currents, a well known phenomenon observed in various numerical frameworks. 
We study the effectiveness of this novel numerical method on state-of-the-art test cases 
showing that the resulting curvature estimate significantly reduces parasitic currents. In 
addition, the proposed approach converges to fourth-order regarding spatial discretization, 
which is two orders of magnitude better than algorithms currently available. We also show 
the necessity for high-order transport methods for the surface by studying the case of the 
2D advection of a column at equilibrium thereby proving the robustness of the proposed 
approach. The algorithm is further validated on more complex test cases such as a rising 
bubble.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Surface tension is a key mechanical force in multi-phase flows where it plays a particularly important role in hydro-
dynamics at small scales. Rising bubbles and airborne water drops are common examples of such flows (see for example 
[1–3]). The surface tension force lies at the interface between the two phases and is thus singular at that location. This 
singularity makes it a complicated continuum mechanics problem when coupled with the Navier–Stokes equations.

From a numerical point of view, this singular force is challenging as it requires precise localization of the surface, its 
associated normal vector and curvature. A variety of methods have been introduced to localize the surface advected by the 
flow, the front-tracking method [4] in a Lagrangian framework, the Volume Of Fluid (VOF) method [5] and the Level Set (LS) 
method [6] in a Eulerian framework. These three widely used approaches offer advantages and drawbacks such that these 
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methods are actively researched today. We base our original work on the level set framework which permits easy capture 
of topological changes and offers the advantage of simpler algorithms and a natural extension from 2D to 3D. However, 
in comparison to the Lagrangian representation, precise localization of the surface is lost and the level set method usually 
suffers from more volume loss than, for example, VOF methods. A wide range of techniques has been proposed to alleviate 
these problems such as the hybrid particle level set [7], the CLSVOF method [8] and high-order semi-Lagrangian particles 
method [9]. As we demonstrate in this article, accurate transport of the surface is required to attain high-order computation 
of the dependent curvature. In a Eulerian framework, the surface is immersed in the fluid through the use of a Dirac mass 
and a Heaviside function to characterize the phases.

The surface tension force is commonly introduced in the Navier–Stokes equations as an external force located at the 
interface. The Continuum Surface Force (CSF) model introduced in [10] gives an elegant solution to regularize the singu-
lar term. The method is based on spreading the force over a small neighborhood around the interface. In the last decade, 
research has been focused on the reduction of spurious currents, arising in the vicinity of the surface [11–16]. These cur-
rents are numerical parasitic velocities introduced in the flow by errors in the estimation of the surface tension force. As 
demonstrated in [17], they are quadratically proportional to the curvature which leads to the need of an accurate curvature 
computation. Following the observations of François et al. [11], in the CSF model the creation of such currents is due to:

1. non-coherent numerical differentiation in solving the Navier–Stokes equations,
2. non-coherent computations of the surface position, normal vector and curvature.

The first criterion has been recently addressed by the introduction of a balanced-force algorithm [11] which is based on 
coherent numerical schemes for computing the surface tension force and the associated pressure jump. This technique 
reduces spurious currents down to machine precision when the curvature is prescribed exactly.

The second cause of these currents is still being investigated today through improving the accuracy of the interface 
normal and curvature computations, which are direct derivatives of the surface and thus also singularly located. In con-
sequence, they need to be treated adequately in a Eulerian framework. For VOF methods, the Height Function (HF) [18]
approach (along with some other improvements) is more precise and drastically reduces spurious currents as shown in [14]. 
However, their accuracy relies on the precision of the underlying phase function, itself dependent on the VOF transport al-
gorithm (we refer the reader to [19] for a comparative study of the PLIC, WLIC, THINC and CLSVOF methods), which hardly 
reaches second-order in space accuracy as it is discussed in §2.4.1. More complex methods such as MOF [20] can improve 
the accuracy of the volume fraction while still not being precise enough to ensure spatial convergence of the surface curva-
ture after its transport. That is why recent research focuses on coupled methods like CLSVOF [8] or CLSMOF [21] which use 
the underlying level set for more accuracy on the curvature computation.

For level sets, a curvature extension based on a closest point algorithm [22] has been efficiently used in [12], for un-
structured grids, which reduces spurious currents much more than previous techniques. The implementation of this method 
is quite simple and can be easily extended to 3D.

In the CSF approach, the accuracy of the curvature calculation is essential to reduce the introduction of errors in the 
flow. In this paper we present a detailed study of the difficulties arising in the numerical computation of surface tension 
forces in a Eulerian framework, which relies on the extension of the curvature in the vicinity of the interface. In section 2.4
we develop three key criteria for evaluating the quality of this extension, and illustrate their respective effects on flow 
dynamics. These criteria are guidelines for the techniques described thereafter. In particular, we assert that a minimized 
variation of the curvature in the normal direction of the surface is crucial to reduce numerical errors on the surface tension 
term.

In §3.4, we present the principles of curvature extension for level sets and compare three different methods for their 
computation, the last being the novel method that we propose:

1. the osculatory circle approximation which consists in a linear extension of the curvature in the normal direction,
2. the Closest Point method based on the interpolation on the surface of a curvature approximation, as proposed by 

Herrmann in [12],
3. the proposed approach based on an improved Closest Point algorithm that ensures the colinearity criterion, and uses 

reinterpolation to reduce variation in the normal direction.

We discuss the respective advantages and drawbacks of each technique in order to propose a general understanding of cur-
vature extension in a level set framework. The accuracy of the methods is then compared and analyzed on geometric cases 
in §4.2. All three methods give very good results with circular geometry. In order to discriminate between the methods, we 
studied the case of the ellipse which is more challenging because the variation of the curvature is less trivial. Consequently, 
the proposed Closest Point algorithm with colinearity properties and reinterpolation is finally retained for its high accuracy 
and robustness.

We first validate our approach for the classical static column, first with constant density §4.3 and then with variable 
density §4.4, and prove its ability to drastically reduce spurious currents at fourth-order convergence rate. Popinet [14]
studied the spurious currents when a column is advected by a constant velocity. This case is a good challenge for surface 
tension methods because it induces more errors at the interface. In §4.5, we report very satisfactory results demonstrating 
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Table 1
Terminology. In the paper, all units are given in the International System of Units.

Symbol Definition

ρ Fluid density
μ Fluid dynamic viscosity
u Fluid velocity
p Pressure
σ Surface tension coefficient
H The Heaviside function
δ The Dirac mass
h The spatial discretization step
�t The temporal discretization step
xi j The discrete value of x at i, j

Symbol Definition

� A surface
n Surface normal
τ Surface tangent
κ Surface curvature
φ,ψ Level set functions
κ̃ Discrete representation for any κ
κex Exact value for any κ
κσ The standard deviation of the curvature
κσ,n The normal standard deviation of the curvature
RMS Root Mean Square

that the algorithm proposed is robust to the transport of the surface. This robustness is due to high-order resolution of 
the advection equation coupled with accurate curvature extension. Finally, we validate our algorithm with a comparison of 
numerical results obtained from the simulation of the zero gravity drop oscillation §4.6 and the 2D bubble rise §4.7. This 
demonstrates that the approach proposed can be effectively used in Navier Stokes solvers based on level set methods.

2. Governing equations

2.1. Terminology

Before presenting the equations we present in Table 1 the terminology and notations that will be used through the 
whole document.

2.2. Two-phase fluid flow equations in the presence of surface tension forces

The incompressible Navier–Stokes equations with variable densities and viscosities following the continuum–surface–
force (CSF) approach originally proposed by Brackbill et al. [10] can be written as:

ρ(∂tu + u · ∇u) = −∇p + 2∇ · (μD) + σκδ�n (1)

∂tρ + (u · ∇)ρ = 0

∇ · u = 0

with D = (∇u + ∇uT
)
/2 the deformation tensor and p the pressure field. The term σκδ�n is singularly located on the 

surface � separating the two phases by a Dirac delta function δ� , oriented in the normal direction n, with curvature κ and 
a physical surface tension coefficient σ . Equation (1) is valid under the assumption a constant σ along the surface between 
the two phases which is a common assumption in most fluid dynamics computations.

2.3. Level set representation for two-phase flows

In the level set approach, the phases of the fluid are spatially identified in n dimensions using a function φ : Rn → R
such that each phase stands on one side of a certain level set value α. Thus, they are separated by the surface:

�(t) = {x |φ(x, t) = α}. (2)

For the sake of simplicity we choose α = 0, implying that the first (resp. second) phase stands where φ is negative (resp. 
positive).

The local concentration ci – or characteristic function – of the ith phase is written

ci(x, t) = Hi(φ(x, t)),

where H1(y) = H(y) = 1 − H2(y) and H(y) is the Heaviside function defined as H ′(y) = δ(y).
The density ρ is expressed over the whole domain as a function of φ:

ρ(x, t) = H(φ(x, t))ρ1 + (1 − H(φ(x, t)))ρ2, (3)

where ρi is the constant density of the ith phase. A similar equation represents the viscosity μ(x, t).
As in common level set methods, the function φ is passively transported by the fluid through the advection equation:

∂tφ + u · ∇φ = 0 (4)

which implicitly follows the position of the surface over time.
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The normal and curvature fields can be computed for the whole domain as:

n = ∇φ

|∇φ| , (5)

and

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

(6)

Equations (5) and (6) coincide with the normal to and the curvature of the surface � for points x such as φ(x) = α.
Due to the numerical discretization in the level set Eulerian framework we work with a smooth representation of those 

quantities where δ� and H are not singular but spread in the vicinity of �. Thus we will use the term extension for any 
quantity that physically stands on the surface but is numerically and spatially extended around it.

2.4. Problems arising with surface tension forces

As stated in the introduction, a qualitative computation of surface tension forces to minimize the spurious currents is 
based on two criteria:

Criterion 1. The consistent numerical discretization of the pressure and surface tension terms.

Criterion 2. The rational computation of the surface’s curvature.

By rational computation we mean a curvature computation that assures the three following aspects:

Criterion 2.1. Fast convergence to the exact curvature.

Criterion 2.2. Minimized deviation along the surface.

Criterion 2.3. Minimized variation along the surface’s normal.

Several efficient and accurate numerical methods have been developed over the last decade focusing on the computation 
of the curvature and the surface tension term. The balanced-force algorithm used in different flow simulation frameworks 
and based on the Ghost Fluid Method [11], VOF [14], level set on unstructured grids [12] has greatly reduced the numerical 
errors by satisfying Criterion 1 with methods suitable for the curvature computation to satisfy Criterion 2.

Our flow solver presented in section 3 is based on the same balanced-force principle and an improved curvature com-
putation that complies with Criteria 2.1, 2.2 and 2.3.

For the sake of clarity we explain the importance of those 3 criteria using a 2D case of the static column equilibrium 
which has been widely used in the literature as a minimal and representative case.

2.4.1. Fast convergence to the exact curvature
The first criterion is essential to computationally converge to the physical experiments, as shown in Fig. 2(a). Even in 

a stable simulation, a significant error in the calculation of the curvature can drastically change the hydrodynamics. This 
becomes particularly important when the computational grid is refined as high curvatures can arise and often dominate the 
dynamic processes at those scales.

Hence it is essential to have a precise and fast convergent computation of the curvature, at least at the same order as 
the flow solver. Whatever the choice Eulerian or Lagrangian for the surface representation, the curvature depends on the 
second derivatives of a given function φ. For example, the curvature of a parameterized curve � = (x(t), y(t)) is:

κ = x′ y′′ − y′x′′(
x′ 2 + y′ 2

)3/2

or given by equation 6 for level sets.
In this section, we use the term “error” in a general context. In a numerical point of view, we use the most restrictive 

L∞ norm to define the error E∞ between an analytical solution ψ and its numerical approximation φ as:

E∞(ψ,φ) = max |ψ − φ| .
Errors in second derivative computation.

Proposition 1. The error in the second derivative is of order m − 2 when the error on the surface representation is of order m.
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To prove this, we first illustrate the impact of numerical errors on the second derivatives of a function. This demonstra-
tion can be extended to the general case of surface and curvature computation, regardless of whether the surface is Eulerian 
or Lagrangian.

Let ψ be a 1D function of x, sufficiently differentiable. In addition, let φ be a perturbed version of ψ such that 
φ(x, h, m) = ψ(x) + e(x, h, m), where e(x, h, m) represents a perturbation of amplitude of order hm with spatial frequency 
1/h (where, in a numerical computation, h is the spatial discretization, i.e. the smallest variation that can be captured). The 
associated numerical error is:

E∞(ψ,φ) = max |ψ(x) − φ(x,h,m)| = max |e(x,h,m)| = O (hm).

The nth derivative of φ is a function of the nth derivatives of ψ and e(x, h, m):

∂nφ(x,h,m)

∂xn
= ∂nψ(x)

∂xn
+ ∂ne(x,h,m)

∂xn
.

Then the perturbation on the nth derivative of φ will be of the order hm−n , i.e. the associated numerical error is:

E∞(
∂nψ

∂xn
,
∂nφ

∂xn
) = max

∣∣∣∣∂nψ(x)

∂xn
− ∂nψ(x,h,m)

∂xn

∣∣∣∣ = max

∣∣∣∣∂ne(x,h,m)

∂xn

∣∣∣∣ = O (hm−n).

Hence, if m > n then the function ∂nφ
∂xn will converge toward ∂nψ

∂xn at a positive rate of O (hm−n), otherwise it will not converge 
and lead to errors > O (1) increasing as h → 0. This is completely independent of the accuracy of the underlying numerical 
scheme used to discretize the quantities, especially the curvature.

A detailed example is given in Appendix A.

Errors in the initialization and transport of the surface. When a function φ represents the surface, whether in a Lagrangian or 
Eulerian fashion, and if the error in its initialization and/or transport is less than the order 2, then the errors in the second 
derivatives of φ – hence the curvature – will be at least O (1), given the previous demonstration. This will lead to increasing 
error in the flow as the spatial discretization tends to 0.

Therefore, in order to have at least a second-order error in the computation of the curvature, it is mandatory to initialize
and transport the surface with errors less than order h4 compared to the exact solution. This is true regardless of the errors 
in the velocity field used to transport the surface as the exact solution also has to be transported by the perturbed flow.

Examples for second-order precision

• In a Lagrangian representation, the discretized points have to stand closer than h4 to the exact surface. The velocity 
interpolation at those points must be at least fourth-order.

• In a level set/signed distance approach, the distance to the surface has to be computed at least to fourth-order, which is 
easily attainable for common geometries. The transport equation must be solved at the same order, as well as reinitial-
ization algorithms to ensure a similar order of precision. If fourth-order methods are used to transport and reinitialize 
φ then the curvature computation will never be better than second-order.

• In VOF methods, the fraction of volume occupied by the phase has to be computed at least to fourth-order, which is 
not trivially obtainable even for common geometries. In [18] the authors use a refinement technique to initialize the 
volume fraction more precisely, up to second-order and the curvature is computed with the HF method. In Fig. 9 and 
in the text of section 5.1, they show a second-order convergence of the curvature error. This statement is not correct as 
proven in the above paragraph. To demonstrate this we did the exercise with the same parameters and methods (with 
the HF algorithm implemented from [23]). As shown in Fig. 1, the curvature error clearly diverges when using finer 
meshes than the one used in [18]: what they have observed is a bias visible at coarse meshes (for R/h < 40) which 
is due to reduced numerical errors on the initial volume fraction, relatively to the exact value. However, these errors 
become dominant with finer discretization (for R/h ≥ 40) and exhibit non-convergence, as proven in Proposition 1. 
More precise methods for the initialization have been proposed since, like for example [24], but as VOF is not the 
representation chosen for our method, we will not discuss the question further. Additionally, the transport equation 
also has to be at least fourth-order. Fig. 1 also shows that, even with the exact volume fraction computation, the use of 
a low order transport technique does not lead to spatial convergence for the curvature. Until recently, no VOF transport 
method was sufficiently precise to attain high-order dynamic computation of the curvature; recent methods such as 
DRAC [25] are fourth-order accurate in space.

2.4.2. Minimized deviation along the surface
In the particular case of a static column in 2D (resp. a static sphere in 3D), the overall deviation of the curvature along 

the surface can be expressed through the standard deviation. It is described on the surface as:

κ̃σ =
√√√√∫

�

(κ̃ − κ̃mean)2 (7)
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Fig. 1. L1 volume and L∞ curvature error with VOF representation, for a disk of radius R = 0.25 centered in a box of size 1, h = 1/N is the spatial 
discretization step. The volume fractions are initialized with linear segments, with or without mesh refinement (like proposed in [18]) or with the exact 
solution obtained by integration of the circle equation. The curvature is computed with the second-order accurate Height Function algorithm implemented 
from [23].

where the tilde denotes discrete measures, the σ symbol is used here to mean standard deviation and κ̃mean is the numer-
ically computed mean curvature:

κ̃mean =
∫
�

κ̃. (8)

As stated in [14], this second criterion is numerically relevant as, in the case of a balanced force algorithm, it reduces the 
spurious currents to the machine precision. This statement is true even in the case of a poor computation of the absolute 
physical curvature, i.e. even when |κ̃mean − κexact| is high.

For the static column equilibrium problem, the presence of oscillations on the curvature evaluation along the interface 
will result in the appearance of capillary waves, thus creating undesired spurious currents in the whole simulation. It is 
important to note that this criterion is hardly extendable to the general case where the curvature is not constant along the 
surface. However, one can picture those small variations in the curvature as a bias in the geometry between the position of 
the surface, its normal vector and curvature that will disrupt the flow dynamic through the surface tension errors, as it is 
depicted in Fig. 2(b).

In a more general context where the curvature is not constant, the deviation along the surface is less trivial. It can be 
expressed in the proximity of x a point on the surface �, as:

κ̃σ (x) =

√√√√√ ε∫
−ε

(
κ̃ (�x(s)) − κ̃exact (�x(s))

)2
ds

where �x(s) is a parameterization of the surface around x, with �x(0) = x, and with ε → 0.

2.4.3. Minimized variation along the surface’s normal
Following the description in §2.3 where the surface is implicitly represented in a Eulerian level set framework, a common 

strategy to solve PDEs on the phases or surfaces is to smoothly extend the physical properties in a region around the 
interface. Hence the third criterion, which can be geometrically understood as orthogonal to the previous one, consists in 
minimizing the errors in the calculation of the extension of the curvature, which will be treated in detail in §3.4.4. The 
precise extrapolation of quantities in the normal direction is necessary in other applications, for example for the mean 
curvature motion in a Eulerian framework (see [26] for a level set study). In a VOF framework, a smoothing or an extension 
of the curvature is computed in order to obtain a better estimation of κ at grid nodes, as presented in [18,27] for example.

Errors in the normal direction will deviate the dynamics of the flow by introducing forces in the vicinity of the surface 
that will create undesired perturbations, as depicted in Fig. 2(c). Hence, it is necessary to compute an accurate curvature 
extension, i.e. a curvature that is constant in the normal direction, as pointed out by [17].
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Fig. 2. Visual representation of the effects of the different errors on curvature following Criteria 2.1, 2.2, 2.3. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

In the case of a level set representation of the surface, it can be easily seen that a simple computation of the curvature 
as κ = ∇ · n will lead to a high deviation in the normal direction, as depicted in Fig. 3(a) representing the level sets of a 
circle. Moreover, we can see in this example that the curvature will be higher inside the circle and lower outside, compared 
to the curvature on the surface. This fact is true on any smooth geometry as the spatial discretization tends to zero.

In the presence of surface tension, this last phenomenon will dynamically stretch the level sets on one side of the surface 
while compacting it on the other side. This can lead to more numerical errors as the flow moves the level sets, particularly 
when using a signed distance function that will be highly distorted, requiring frequent reinitializations of the level set 
function.
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Fig. 3. (a) Local evaluation of the curvature based on a signed distance level set function. The curvature varies as 1/(R − φ) on the φ ’s level set, R being 
the exact radius of the osculatory circle of the surface at φ = 0. (b) Graphical representation of the line ξ(x, λ) = x +λn(x) passing through x and following 
the normal n(x) of the surface �.

Given that the surface tension forces are spread in the vicinity of the surface, if the variation of the curvature along the 
normal is null then the surrounding level sets will move at the same speed hence reducing the numerical errors. In the 
case of the column equilibrium problem, this will reduce the spurious currents.

As a consequence, in order to reduce parasitic currents, one has to minimize the deviation κσ,n of the curvature along 
the normal. It can be expressed similarly to eq. (7) at a point x on the surface �, given any curvature κ that is extended in 
the whole domain:

κ̃σ ,n(x) =

√√√√√ ε∫
−ε

(
κ̃ (ξ(x, λ)) − κ̃(x)

)2
dξ

where ξ(x, λ) = x + λn(x) is the line passing through x and following the normal n(x), as illustrated in Fig. 3(b). This 
measurement is meaningful in the vicinity of � and therefore on the segment {ξ(x, λ), λ ∈ [−ε, ε]}, with ε → 0. In a 
Eulerian framework, it is evaluated for discrete points x close to the surface.

2.4.4. Conclusion
In the next section, we present a novel method based on:

1. the balanced force method as developed in [11] and detailed for a level set framework in §3.3,
2. an adaptation of the Closest Point method for curvature extension as first used in [12], that we improved as detailed in 

§3.4.

Our approach is focused on the accurate and efficient numerical computation of the curvature in the vicinity of the surface 
complying with fast convergence to the exact curvature (Criterion 2.1) and minimized deviation along the surface (Crite-
rion 2.2) and along the normal direction (Criterion 2.3).

3. Numerical methods

In this section we first describe the general Navier–Stokes flow solver we used, then the level set transport equation 
algorithm. In the third subsection we present our implementation of the balanced-force surface tension method in a level 
set framework. We finally present the method that we developed for the accurate computation and extension of the surface 
curvature. The validation of the method with associated numerical results is presented in section 4 on pure geometric and 
dynamic cases.

3.1. Flow solver and discretization

For our numerical simulation, we used the Thetis flow solver [28,29]. Time discretization of the momentum equation 
is a first-order Eulerian scheme with an implicit formulation for the viscous term. The velocity/pressure coupling under 
the incompressible flow constraint is solved with the time splitting pressure correction method [30]. The equations are dis-
cretized on a staggered grid by means of the finite volume method. The space derivatives of the inertial and stress terms are 
discretized by a second-order centered scheme. Since the phase function is not defined on each grid point where viscosities 
and densities are needed for the Navier–Stokes discretization, the physical characteristics are interpolated on the staggered 
grid. We use a linear interpolation to calculate the density on the velocity nodes, whereas a harmonic interpolation is used 
for the viscosity. Linear systems of the prediction and correction steps are solved thanks to the direct MUMPS solver [31,32].
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3.2. Level set transport

In order to obtain an accurate computation of the curvature, as stated in section 2.4.1, the level set function is advanced 
in time using a 5th order in space WENO method as first described in [33]. A second-order in time Runge Kutta scheme is 
used based on the advection of φ for half a time step:

φn+ 1
2 = φn − �t (un · ∇)φn

φn+1 = φn − �t (un · ∇)φn+ 1
2 ,

with φn(x) = φ(x, tn) and φn+1(x) = φ(x, tn + �t).
This method limits the spatial errors for φ around O (h5) which, with a precise curvature computation, theoretically 

yields a third order error in the curvature computation. We will see and explain in section 4 that we reach errors at even 
higher order in the presence of small velocities.

3.3. Balanced force surface tension

In order to satisfy the consistent numerical discretization scheme criterion (cf. §2.4, Criterion 1), the surface tension term 
is discretized on the MAC grid at the velocity nodes, i.e. on the faces of the control volume, with the same finite difference 
scheme used for the Poisson pressure equation. As in typical balanced force algorithms, we use the CSF approximation for 
the surface tension term rewritten relative to the phase concentration c (we dropped the index for clarity, posing c = c1):

σκδ�n ≡ σκ∇c,

where ∇c is numerically computed at the faces of the cells, and points from phase 2 to phase 1.
As a consequence, recalling that the concentration c changes its value from 0 to 1 on either side of the interface, ∇c is 

located on the faces of the cells surrounding � depending on the stencil used to compute ∇c and on the smoothness of c.

Remark. Using a first order accurate function for the concentration, i.e. c equals 0 (resp. 1), if φ is negative (resp. positive) 
will lead to an aliased function following the cells’ faces. Consequently the pressure profile will directly follow this aliasing 
as well as the surface. As a cell’s level set value can vary with transport from a certain small value ±ε around zero, the 
surface tension force (and thus the pressure jump) will undesirably oscillate from one cell to another. Moreover, derivating 
this function to compute ∇c for the surface tension force will lead to O (1) errors.

Hence it is necessary to use sufficiently accurate representations of the physical quantities in order to avoid the aliasing 
problems.

A common choice for calculating the concentration is to use a regularized Heaviside function such as:

c(x) = Hε (φ(x))

where ε = O (h). This smooth approximation can induce a smoother dynamic behavior. We did not find this to be a problem 
in the cases we studied in section 4. Common strategies for computing the Heaviside function in a level set framework do 
not show strict spatial convergence in 2D and 3D when ε = mh, as proven in [34] for the associated δε function. Moreover, as 
proven in [35] (and as studied in their references), in presence of high density ratios, the use of a smooth Heaviside function 
to define the physical quantities is crucial to increase numerical stability. From a physical point of view, the interface is thus 
perceived as a volume of fixed width assuring a continuous transition between the two phases. For the sake of simplicity, 
we used the same smoothed Heaviside function to define ρ , μ and c.

Hence, we did not find necessary to implement a more precise scheme, as for example proposed in [36]. The method 
proposed in this article is totally independent of this choice, however, a precise numerical approximation of the Heaviside 
function will benefit the overall numerical results.

In order to guarantee a precise enough Heaviside function for sufficiently fine spatial discretizations (as used in our 
numerical results of section 4), we chose a value of ε = 2h and:

Hε(y) =

⎧⎪⎪⎨⎪⎪⎩
0 if y ≤ −ε

1 if y ≥ ε

1 + y/ε + sin
( yπ

ε

)
/π

2
otherwise

(9)

with its associated smooth Dirac mass

δε(y) =
⎧⎨⎩0 if |y| ≤ ε

1 + cos
( yπ

ε

)
2ε

otherwise.
(10)
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Fig. 4. Closest point method: a geometrical representation. Yellow dots are grid points with their corresponding closest point on the surface as red dots. 
Normals and tangents on the surface are drawn as dotted square ended segments. The purple lines show the colinearity between −−−−→

x CP(x) and n (CP(x)). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Moreover, so as to be sure to reduce the effect of interface spreading or shrinking when the level set is not a distance 
function, we used a renormalized representation of the level set as proposed in [37]:

c(x) = Hε(φ(x)/|∇φ(x)|).
For the discretization of the ∇c, we used the same second-order scheme as for the pressure gradient: ∂ci+ 1

2 , j/∂x = (ci+1, j −
ci, j)/�x. Hence, with ε = 2h, the surface tension force is null everywhere but on the faces in the 3 × 2 = 6 cells band 
surrounding �.

Consequently, κ has to be computed accurately only at the center of cells around which ∇c is not null. In our flow 
solver, the curvature has to be known at the center of the faces of the staggered grid. We discuss this point in §3.4.5.

3.4. Curvature extension in a level set framework

In order to satisfy the rational computation of the surface’s curvature criterion (cf. §2.4), one must use numerical methods 
that prove convergence in space discretization (Criterion 2.1) and minimal variation on the surface (Criterion 2.2) and along 
its normal (Criterion 2.3).

We present here a novel method to attain this goal in 2 steps:

1. The accurate initial estimation of the curvature,
2. The precise extension of the curvature in the vicinity of the interface.

First, we describe the general principle of the Closest Point method on which our approach is based. Then, we introduce 
error criteria that will help to analyze the numerical behavior of the method. Finally, we detail the novelties of our method 
which calculates an accurate curvature extension in a level set framework.

3.4.1. The Closest Point method
The Closest Point (CP) method, first introduced in [38], has been successfully used in [22] to solve PDEs defined on 

a surface by extending the physical quantities in the vicinity of the surface and then solving the equations in a Eulerian 
domain. The CSF principle from [10] is based on a parallel point of view for integrating the singular force residing on the 
surface.

Herrmann [12] first used the CP principle to extend the curvature in a level set framework. It consists in defining the 
curvature at a point x as the curvature of its closest point on the interface:

κ(x) = κ(CP(x)) (11)

In a Eulerian framework, it requires the use of interpolation functions as CP(x) will generally be localized between grid 
points. That principle can be applied to any physical quantity defined on the surface for which an extension is needed. 
Our approach follows Herrmann’s work by improving the CP research algorithm and enhancing the curvature’s extension 
smoothness.

CP(x) is the closest point from x to the surface � and is defined as:

CP(x) = min
y∈�

(‖x − y‖). (12)

By construction the vector 
−−−−→
x CP(x) is orthogonal to the local tangent at CP(x) and hence is collinear with the normal of the 

surface at CP(x):

−−−−→
x CP(x) · τ (CP(x)) = 0 (13)

where τ is the unit tangent orthogonal to n as shown in Fig. 4.
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3.4.2. Error measures
In order to analyze the accuracy of the numerical methods used to compute the curvature, we define four error mea-

surements.

Exact curvature. In order to bound the errors of the numerically computed curvature, we need to define an exact curvature 
as reference. The curvature is only defined on the surface, in a level set framework, as we are searching for an extended 
representation of the curvature of a surface. Following equation (11), we define the exact curvature at a point x as:

κex(x) = κex(CP(x)). (14)

In the case of a circle of radius R , the exact curvature is constant over the whole domain: κex(x) = 1/R .
To understand how the closest point method extends physical quantities in the whole domain, we recall from §2.4.3 the 

definition of the line ξ(y, λ) that passes by the point y on the surface and follows the normal at y:

ξ(y, λ) = y + λn(y) (15)

with λ ∈ R. Based on equation (14), we know that x stands on the line ξ(CP(x), λ).
We can then define the dual extended curvature lines for every point y of the surface, along their associated normal by:

κex,n(ξ(y, λ)) = κex(y). (16)

The collection of segments of extended curvature lines κex,n for which |λ| is minimal is the extended curvature field κex as 
defined by (14).

It is important to note that ambiguities arise when two or more lines ξ(y, λ) intersect for a same parameter length |λ|, 
i.e. when a point x has two or more closest points on the surface. These cases arise for points relatively far from the surface 
or when the surface curvature is large. In a numerical framework, it is statistically highly unlikely to encounter the case of 
two equidistant closest points. However, the closest point to x will vary from one point on the surface to another when the 
surface is transported, phenomenon that could lead to temporal jumps in the curvature field. This problem is not assessed 
in this paper, however we did not encounter any numerical instabilities as the extended curvature field is computed close 
enough to the surface and the curvature is not too high, i.e. κ � h−1.

In practice, we only require κex in the vicinity of a few cells (here N cells) around the interface as required by the CSF 
approximation (cf. §3.3). For that purpose we introduce the function δN

� defined by:

δN
� (xi j) =

⎧⎪⎨⎪⎩
1 if δN−1

� (xi′ j′) = 1 or is next

to a cell i′ j′ such that δN−1
� (xi′ j′) = 1,

0 otherwise.

(17)

This band around the interface is constructed iteratively based on the cells containing the interface δ0
� :

δ0
�(xi j) =

{
1 if 0 < c(xi j) < 1,

0 otherwise.

In the next sections, for the sake of clarity, we drop the exponent N in δN
� .

L2 and L∞ norm errors. We define the L2 and L∞ normalized errors for the curvature on the overall domain as:

L2 = 1

κex

√∑
(κ̃ − κex)2δ�∑

δ�

, (18)

L∞ = 1

κex
max |(κ̃ − κex)δ�|. (19)

Standard deviation on the surface. The (normalized) standard deviation on the surface is only significant for a circle/column 
where the exact curvature is constant along the surface, hence it can only be studied in that case:

κ̃σ = 1

κ̃mean

√∑
(κ̃ − κ̃mean)2δ� (20)

where

κ̃mean =
∑

κ̃δ�∑
δ�

. (21)
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Fig. 5. Stencil used for computing the standard deviation along the normal with fourth-order Lagrange interpolation functions. The surface is shown in red, 
blue (resp. purple) dots are used for k = 1 (resp. k = −1) in eq. (23) and are spatially shifted for clarity. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Standard deviation along the normal. The (normalized) standard deviation along the line ξ(y, λ) defined at point y is computed 
as:

κσ,n(y) = 1

κ(y)

√∫
(κ(ξ(y, λ)) − κ(y))2 dλ (22)

which is discretized in the M cells neighborhood of the cell yi, j as:

κ̃σ ,n(yi, j) = 1

κ̃(yi, j)

√√√√ 1

2M + 1

+M∑
k=−M

(κ̃(ξ(yi, j,kh)) − κ̃(yi, j))
2. (23)

In practice, as we are looking at the variation of κ in a small area around the interface, we fix M = 1. It should be noted 
that fourth-order Lagrange interpolation functions are used to compute κ̃(ξ(yi, j, kh)) because ξ(yi, j, kh) will generally not 
coincide with the mesh points. The stencil used to compute κ̃σ ,n around one cell is presented in Fig. 5.

The overall L2 and L∞ errors for standard deviation along the normal are defined as:

L2,κ̃σ ,n =
√∑

δ�κ̃2
σ ,n∑

δ�

, (24)

L∞,κ̃σ ,n = max δ�κ̃σ ,n. (25)

3.4.3. Accurate estimation of the curvature
Before applying the Closest Point algorithm, we first need to get a precise initial estimation of the curvature at the 

surface points. Recalling eq. (6), the curvature can be computed in the Eulerian level set framework on the overall domain 
by numerically computing:

κLS = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

(26)

where we use the index LS to further differentiate this scalar field with the other methods. In order to reduce the numerical 
errors due to the computation of higher-order derivatives, we use a formula for the curvature where the second derivative 
errors are limited to only a part of the calculation:

κLS = ∇ ·
( ∇φ

|∇φ|
)

= 1

|∇φ|
(

�φ −
([

D2φ
] ∇φ

|∇φ|
)

· ∇φ

|∇φ|
)

(27)

where D2φ is the Hessian matrix of φ: 
[

D2φ
]

i, j = ∂2φ
∂xi∂x j

.

Understanding the curvature field in a level set framework.

Fact 2. For any smooth level set function φ , as h → 0, the curvature computed by equation (26) on the surface, i.e. x ∈ �, is the exact 
curvature of the surface at x.

We propose to extend this property to all the surfaces captured by φ, i.e. all iso-values:
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Claim 3. For any function φ , as h → 0, the curvature computed by equation (26) at a point x is the exact curvature at x of the surface 
defined by the level set φ(x) = α.

Those two properties will be used below to express a first approximation of the extension of the curvature in the whole 
domain. To illustrate this point, under the assumption � = {x | φ(x) = 0}, we describe three cases:

1. If φ is a signed distance function, i.e. φ(x) = sd(x), then κLS(φ, x) is the curvature of the surface represented by the 
level set �φ(x) = {y |φ(y) = φ(x)}. The curvature in the whole domain can thus be seen as a stretched/shrunk extension 
of the curvature at the surface, growing as a function of sd(x), as depicted in Fig. 3.

2. If φ can be defined as the composition of another level set ψ with a scalar function f , i.e. φ = f (ψ), then we can 
express the curvature by the relationship:

κLS(φ, ·) = ∇ ·
( ∇φ

|∇φ|
)

= ∇ ·
( ∇ f (ψ)

|∇ f (ψ)|
)

= sign
(

f ′(ψ)
)( ∇ψ

|∇ψ |
)

= sign
(

f ′(ψ)
)
κLS(ψ, ·)

which gives κLS(φ, ·) = κLS(ψ, ·) when f ′ is strictly positive. Hence any strictly increasing function f applied to a signed 
distance brings us back to the first case.

3. Otherwise, outside of � where φ cannot be interpreted as a function of a signed distance function, κLS may not be 
directly compared to the surface’s curvature. However, if φ is sufficiently smooth, a re-normalized form (see [37]) of 
the level set function φ/|∇φ| gives a first order approximation of a signed distance function near the interface which 
brings us back to the first case.

3.4.4. Extension of the surface’s curvature
Here we present two different methods for extending the surface curvature and discuss the advantages and drawbacks of 

each method. The first one is based on Claim 3 and is presented to give a better geometrical understanding of the curvature 
in a level set framework. The second is the method we propose based on the Closest Point method presented in §3.4.1 and 
following Herrmann’s works [12].

Osculatory circle approximation. This approximation is based on the fact that, under the assumption that locally, as the 
discretization tends to zero, the curvature of a surface can be defined as the inverse of the radius of the osculatory circle 
tangent to � at y:

κ(y) = 1/R(y).

This assertion is also true in a level set framework as shown in Fig. 3(a). Let d(x) be the signed physical distance from the 
point x to the surface at level set φ0 = 0. As x stands on the line x = ξ(y, λ) (where ξ is defined by eq. (15)), or conversely 
y = CP(x) ∈ �, we can write d(x) = sign(λ).‖x − y‖. Then the radius of the osculatory circle at x is R(x) = R(y) + d(x) =
κ−1(y) + d(x) = κ−1(x).

Consequently we can define an extended surface curvature as:

κosc(x) = 1

R(y)
= 1

κ−1(x) − d(x)

which does not require any knowledge of y. In a general level set framework the equation is:

κosc(x) = 1

κ−1
LS (x) − dφ(x)

(28)

with dφ being the physical signed distance function computed from φ which, near the surface, as the discretization step 
tends to zero, can be approximated by dφ(x) = φ(x)

|∇φ(x)| . In the particular case of a signed distance function dφ(x) = φ(x).

Limits The limits of this approximation are when:

• the local curvature is null, κ(x) = 0, then the osculatory circle has an infinite radius which can raise numerical problems. 
A threshold is thus used and we set κosc(x) = 0 in those cases,

• the radius R(x) = R(y) + d(x) = 0, i.e. x is the singular center of the osculatory circle, where we do not extend the 
curvature. As we only look in the vicinity of the surface, this case will only arise for very high curvatures (resp. small 
radii), κ = O (1/h) for which we propose a threshold for the maximum curvature value κmax = 1/h, which is coherent 
with the physical maximum curvature that can be captured at the scale h.

This osculatory circle extension is of low order as it does not take into account the variation of a curvature which is essential 
in the general case. We present in 4.2 spatial convergence results that show this approximation to be fourth-order in the 
circular case but only first order in the ellipsoidal case.
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Closest point on surface interpolation. As introduced in §3.4.1, another approach to extend the curvature away from the surface 
consists in finding the closest point to x on � and interpolating the curvature there. We present a detailed version of the 
Closest Point search algorithm that will serve as a base for the novel method proposed hereafter.

Without an analytical representation of the surface, finding y = CP(x) is not as straightforward as finding on which 
line x = ξ(y, λ) stands. However, we can get an approximation of the closest point to x by following the back trajectory 
y = ξ−1(x, λ) starting at x and leading to y.

In a level set framework, ξ−1(x, λ) follows the gradient field of φ and, in general, is a curve and not a line. Thus, one 
needs to descend along that curve to find ŷ = C̃P(x), a numerical approximation of the exact solution y = CP(x).

We introduce Algorithm 1, noted CP
 , to compute an approximate closest point. CP
 is based on a first-order Newtonian 
method with a convergence criterion based on a threshold distance ε � h and a with virtual time step �λ . We have used 
here the local approximation of the distance from the point ŷn to the surface: dφ(ŷn) = φ(ŷn)

|∇φ(ŷn)| and of the normal: n(ŷn) =
∇φ(ŷn)

|∇φ(ŷn)| . Interpolation is used in order to compute those values from the discrete grid points. Fig. 6 shows a schematic view 
of the algorithm.

Algorithm 1 CP
: first order Newton method for the closest point search in a level set framework.

1. Initialize ŷ0 = x, i = 0
2. While |φ(ŷi)| > ε do

(a) ŷi+1 = ŷi − �λd(ŷi)n(ŷi)

(b) i ← i + 1
3. C̃P
(x) = ŷi

In practice, the threshold distance ε is set to h4 as we expect fourth-order convergence on the CP algorithms. The virtual 
time step is set to �λ = 0.9 in order to stay on the same “side” of the level set as much as possible, i.e. not crossing the 
zero level set in the presence of numerical errors. Setting a lower value for �λ will help to converge more precisely for 
points far from the surface. However as we are mostly interested by points in the proximity of �, we have found this value 
to be sufficient.

Once the closest point C̃P (x) has been computed we interpolate the curvature at that position leading to the following 
formula for the extended curvature at the grid point xi, j :

κ̃CP·(xi, j) = Interpolate(κ̃LS, C̃P·(xi, j)), (29)

where we have used the symbol · replacing 
 because any closest point algorithm can be used.
This method drastically reduces the error of curvature along the normal, depending on the κLS approximation and the 

interpolation errors, as shown in section 4.2.

Colinearity criterion improvement Recalling equation (13), for any point x, its closest point CP(x) on the surface � is 
collinear to the normal n�(CP(x)) of that surface, or equivalently orthogonal to the tangent:

−−−−→
x CP(x) · τ�(CP(x)) = 0

Here we used the notations n� and τ� to distinguish between the normal and tangent defined on the surface � and in the 
whole Eulerian domain. In a level set framework, we can compute the cosine angle between a vector −→xy and the tangent at 
y with:

ω(x,y) =
−→xy

|−→xy| · τ�(y).

Algorithm 1 does not guarantee the colinearity property. We propose Algorithm 2, noted CP⊥ , that converges to colinearity 
while still remaining on the surface. This algorithm can be understood as finding a candidate closest point to x on the 
interface and then correcting it toward the direction of colinearity. As this new corrected candidate may not be on the 
interface, we need to project it onto the interface. We apply this procedure iteratively until both the distance to the interface 
and the angle are smaller than a given threshold. A schematic view is proposed in Fig. 6.

Algorithm 2 CP⊥: first order Newton method for the closest point search in a level set framework with colinearity property.

1. Initialize i = 0,
2. Find a first approximation of the closest point ŷ0 = C̃P
(x)

3. While |ω(x, ̂yi)| > ε do

(a) ŷi+1 = C̃P
(ŷi + ω(x, ̂yi) τ (ŷi))

(b) i ← i + 1
4. C̃P⊥(x) = ŷi
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Fig. 6. Schematic view of the Closest Point algorithms. Errors on gradient vectors have been exaggerated and redundant notations omitted for the sake of 
clarity. Green dots stand for intermediate points, blue dots for CP
 results and the red dot for the final CP⊥ result. Normals on the surface are drawn as 
dotted square ended segments. The top gray dashed paths show an erroneous closest point due to poor approximations of the direction ∇φ toward the 
surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Remarks on the convergence of the algorithm and its computational cost This algorithm works under the assumption 
that φ is a smooth enough function where the initial closest point computed with CP
 will not bring us close to a local 
minimum ensuring colinearity while not being the closest point on the surface, as shown by the dashed paths in Fig. 6. This 
will be the case particularly when φ is not close to a distance function (∇φ might pointing the wrong direction) and/or 
for points far from the surface. More efficient and precise numerical methods can be used to calculate the closest point. 
However, as presented in the numerical results, the proposed algorithm is adequate for computing accurate surface tension 
driven simulations.

In comparison to the previous algorithm, this one will compute more iterations. Ensuring the colinearity property greatly 
improves the accuracy of the Closest Point search and the curvature interpolation. We refer the reader to section 4.2 for 
numerical results and efficiency comparison.

Reinterpolating The extended field obtained by interpolation at the Closest Point can suffer from important variations of 
the interpolated field in the few cells around the surface. In order to reduce this perturbation and further homogenize the 
extended field, we perform a second interpolation process on the first field’s extension:

κ̃CP2⊥
(xi, j) = Interpolate(κ̃CP⊥ , C̃P⊥(xi, j)),

κ̃CP2⊥
(xi, j) = Interpolate(Interpolate(κ̃LS, C̃P⊥(xi, j)), C̃P⊥(xi, j)), (30)

which is the algorithm that we used in our numerical simulations.
This process only costs one more interpolation per cell as we have already computed the closest point C̃P⊥(xi, j).
We report in sections 4.2 and 4.3 the numerical results obtained with this method for geometrical and dynamic cases.

Remarks and discussion

• In the remainder of the article, if not stated explicitly, when noting CP, we assume the reinterpolation algorithm has 
been used, dropping the exponent 2 and the index ⊥ for simplicity.

• The errors appearing in the numerical closest point computation compared to the exact closest point are due to:
1. The Newton’s descent first order discretization. It has to be noted that this first order descent is optimal in the case 

of a signed distance function where |∇φ| = 1 over the whole domain.
2. The interpolation functions used.

• In the case where φ is a signed distance function, the CP
 and CP⊥ will theoretically lead to exactly the same point 
on the surface as ∇φ points to the exact closest point. However, due to the discretization of the Newton’s descent and 
numerical and interpolation errors, the Closest Point computed will not be the same and CP⊥ will guarantee colinearity.

• The calculation of the Closest Point in the whole domain – or a band around the interface – gives a straightforward 
result for reinitialization of the level set. The order of precision of the signed distance function reconstructed in this 
way depends on the precision of the CP algorithm used. To attain 4th order precision on the curvature one would need 
a precision of at least order 6 in the signed distance function. However, as reinitialization is not the topic of the current 
article, we will not detail the subject further.

3.4.5. Curvature computation on the staggered grid
On a staggered grid, the level set values and the curvature are computed at the center of the cells while the velocities and 

forces are computed at the center of the faces. Hence, in order to compute the surface tension term σκ∇c, it is necessary 
to interpolate κ at these positions.

Given the Closest Point algorithm, one can easily interpolate the curvature field at any position of the computation 
domain, for example for the face between xi, j and xi+1, j noted x f

i+ 1
2 , j

:

κ
f

i+ 1
2 , j

= κ̃CP·(xi+ 1
2 , j) = Interpolate

(
κ̃LS, C̃P·(xi+ 1

2 , j)
)
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or use the reinterpolation scheme as described above. However, this operation is at the cost of 2 (resp. 3) times more closest 
point computation in 2D (resp. 3D) which will affect the overall computational time. Alternatively, one can use interpolation 
to compute the curvature from the center of cells to the faces with adequate precision:

κ
f

i+ 1
2 , j

= κCP· i, j + κCP· i+1, j

2
(31)

for a second-order accurate interpolation and

κ
f

i+ 1
2 , j

= −κCP· i−1, j + 9κCP· i, j + 9κCP· i+1, j − κCP· i+2, j

16
(32)

for fourth-order accuracy. The later formula has a wider stencil of 4 points where the curvature is needed. It thus requires 
a larger band around the interface inside which the closest points has to be computed, consequently increasing the overall 
computational cost.

In our numerical simulations, we have found that using equation (31) is a good balance between accuracy and efficiency.

4. Numerical results

4.1. Foreword

In all our test cases, the order of convergence for the L2 and L∞ norms are the same, thus we will only show and 
discuss the latter norm which is the more restrictive. For this study, we used smooth representation of the surface � and 
the characteristic phase function via δε and Hε from equations (9) and (10) with ε = 2h where h is the spatial discretization 
step. This regularization contains approximately 81% of the Dirac mass in the 3 cells around the interface, i.e. for φ ∈
[−h, +h]. Thus, all the error measures are numerically computed around the interface in a 1 cell neighborhood, fixing N = 1
in eq. (17). The thresholds used for the CP algorithms are set to h4 for the distance and the angle criterion in order to attain 
fourth-order errors, as shown in the results below.

4.2. Geometrical convergence analysis of the method

In the following paragraphs, we study the Eulerian discretization errors for a fixed geometry by varying the methods 
used: the level set curvature estimation, the osculatory circle approximation and the Closest Point extension. The numerical 
convergence analysis for the CP methods are detailed for the ellipse in §4.2.2 which is the most discriminating.

4.2.1. Circle case
A circle of radius R = 0.2 is centered at the origin of a unit square. The level set is initialized as the exact signed distance 

function:

φ(x) = |x| − R.

Here the relevant parameter is the ratio R/h representing the number of grid cells for a radius.
In this particular case the CP
 and CP⊥ methods give the same results so we will not distinguish them. This is due to 

the fact that for any point in the domain, by construction, the level set’s gradient is always collinear to the normal at its 
closest point on the surface.

Order 2 and order 4 schemes. First, we show the importance of a high-order numerical computation of κLS from eq. (27). For 
that purpose, we have used classical central finite difference schemes of order 2 and 4 for gradients and Laplacian operators. 
Fig. 7 depicts the convergence of the different error measures relative to spatial discretization, taking κex = 1/R = 5.

The results show a roughly first order convergence for the error measurements for κLS; in that case, the second and 
fourth-order schemes give qualitatively similar results. This is expected as the errors in the curvature come from the 
stretch/shrink effect as κosc = 1

κ−1
ex −d

away from the level set at φ = 0, which dominates the error measures.

The CP method acts as expected, leading to the same order of convergence as the scheme used for the κLS . The normal 
deviation leads to fourth-order error convergence. This error is due to the interpolation functions used to compute the 
normal error deviation as discussed below. Concerning the CP reinterpolation method from eq. (30), the error measures are 
only different from the standard CP⊥ method for the normal deviation: in that case we clearly see that reinterpolation of 
the curvature from a first curvature extension reduces the normal error by a factor of 3. As we will see in the ellipse test 
case below, this gain only holds for smooth enough curvatures without deteriorating the curvature field in the general case. 
However it reduces the spurious currents studied in §4.3.

The osculatory approximation based on a fourth-order scheme for κLS gives very good results: it converges at the same 
rate as the CP method for all the error measures except the normal deviation for which it converges more rapidly (around 
order 5). However, the absolute value of the normal deviation is approximately 100 times higher for R/h ≈ 12. Despite this 
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Fig. 7. Circle geometrical test case: spatial convergence as a function of R/h for the 4th order κLS , the osculatory circle correction and the CP method with 
order 2 and order 4 κLS . κLS errors are only shown for O (h4) as the results with the O (h2) scheme are almost identical.

Table 2
Circle geometrical test case: approximate order of convergence of error measures for the different methods.

Method L∞ |κmean−κex |
κex

Std. dev. κ̃σ Normal L∞,κ̃σ ,n

κLS 4th order 1 1 1 1
κosc (w/ κLS 4th order) 4 4 4 5
κCP (w/ κLS 2nd order) 2 2 2 4
κCP (w/ κLS 4th order) 4 4 4 4

good convergence rate, it is important to recall that the useful properties of this method rely on the first order approxi-
mation of the local curvature to the osculatory circle which will be deteriorated in the general case (i.e. contrary to this 
ideal circle case) as it will be shown in the next sections for the ellipse. The convergence rates are shown in Fig. 7 and 
summarized in Table 2.

The aliasing that can be observed in the mean curvature (Fig. 7(a)) is due to the fact that we use a sharp stencil δ� for 
the error measurements around the interface, affecting any measurement contrary to a smooth δ� .

Even though using order 4 schemes for κLS yields much better results, it is important to note that it has to be avoided 
for fast varying φ, i.e. when the local curvature is of the order of h, where it would raise higher errors than a more compact 
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scheme because of high-frequency amplified errors. We chose a sufficiently large R/h ratio to avoid such perturbations. 
However, in the general case, one could think of mixing different schemes based on a first estimation of the curvature.

Errors in the curvature estimation in the presence of fictitious perturbations. In order to see how the method responds to numer-
ical errors that will arise with the transport of the level set, we introduced small perturbations to the initial level set such 
as:

φ̂(x) = φ(x) + e(hM) (33)

where φ(x) is the signed distance function to the circle and e(hM ) is a random function that takes its values in the interval 
[−hM , +hM ]. One has to note that if e(hM) = hM is constant then φ̂(x) = φ(x) + hM and the relative error for the level set 
function is

φ̂(x) − φ(x)

φ(x)
= hM

φ(x)
= O (hM−1)

near the interface. Thus if we add a perturbation of order 3 then the expected perturbation on the curvature computation 
should be of the order 3 − 1 − 2 = 0. However, in the following results, as e(hM ) ∈ [−hM , +hM ] is a random function, we 
expect a smaller deterioration on the order of convergence.

Here we used a fourth-order scheme for κLS . Fig. 8 shows that the introduction of a O (h3) (resp. O (h4)) perturbation 
approximately reduces the order of convergence from 4 to 1 (resp. from 4 to 2), as expected.

4.2.2. Ellipse case
In order to test the robustness of the method in a more general case, we applied the same spatial convergence study to 

an ellipse. Particularly, we will show the effect of the collinear closest point method compared to the standard method. The 
surface is implicitly defined by the level set:

φ(x) =
√( x1

a

)2 +
( x2

b

)2 − R

with a = 1.2, b = 0.8 and R = 0.2, or in a parametric form:

�(θ) = (aR cos(θ),bR sin(θ)) .

It should be noted that the level set function φ is not a signed distance function which is not trivial to compute. The exact 
curvature extension that was constant for the circle case is here less trivial. Recall that the curvature extrapolation is:

κex(x) = κex (CPex(x)) = κ�,ex
(
θCPex(x)

)
,

where θCP(x) is the angular parameter for the closest point to x on the surface. We need to compute the exact closest point 
CPex(x) on the ellipse which is obtained by solving the equation

−−−−−→
x CPex(x) · �(θ) = 0

for θ , as the line from x to its closest point on � is collinear to the normal at that point. This non-linear equation has in 
the general case 2 solutions but only one in the nearest quadrant (known by the position of x compared to the ellipse’s 
parameters). To solve it we used Newton’s method with the search reduced to the nearest quadrant. The curvature at that 
point �(θ) is then computed with:

κ�,ex(θ) = ab(
b2 cos2(θ) + a2 sin2(θ)

)3/2
.

Note that this “exact” extended curvature is subject to discretization errors due to Newton’s descent. In consequence the 
errors that we present below can be biased by this additional perturbation. However we expect this to be negligible.

Also, as stated previously in §2.4.2 comparing the mean curvature and the standard deviation is meaningless since the 
curvature varies along the surface, hence we removed those two error measures for this ellipse test case.

Closest point spatial convergence. In this paragraph, we study the spatial convergence of the two different CP algorithms. For 
this purpose, we look at the error in the distance map defined as the distance from x to its computed closest point on 
the surface CP(x), and the distance between CP(x) and the exact closest point CPex(x). Those two errors have different 
meanings. While the error in the distance to the surface is meaningful, as we aim to interpolate values on the interface, the 
error in the closest point search is, in our case, more relevant.
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Fig. 8. Circle geometrical test case: convergence of the different error measures as a function of R/h in presence of small perturbations for the fourth-order 
CP method.

The L2 and L∞ closest point error measures are defined as

L2,CP· =
√∫

|CP·(x) − CPex(x)|2

and

L∞,CP· = max |CP·(x) − CPex(x)|
where the dot index is either 
 or ⊥ standing for the two different CP algorithms. We also define the distance map error 
measures as

L2,d· =
√∫

(d(x,CP·(x)) − d(x,CPex(x)))2
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Fig. 9. Ellipse geometrical test case: spatial convergence as a function of R/h for κLS with an order 4 scheme, the osculatory circle correction and the CP

and CP⊥ methods.

Table 3
Ellipse geometrical test case: approximate order of convergence of error 
measures for the different methods, a 4th order κLS computation is used.

Method L∞ Normal L∞,κ̃σ ,n

κLS 1 1
κosc 1 1
CP
 2 2
CP⊥ 4 2
CPex 4 2

and

L∞,d· = max |d(x,CP·(x)) − d(x,CPex(x))|
where d(x, y) is here the Euclidean distance from x to y. In a similar fashion to §3.4.2 error measures are numerically 
evaluated in a band around the surface.

Curvature spatial convergence. Fig. 9 shows the spatial convergence for the computed curvature as a function of R/h for 
the L∞ error measures (L2 errors are qualitatively equivalent). Table 3 presents an overview. As expected, the osculatory 
circle method is decreased to first order while the CP method without colinearity converges at second-order, and the use 
of CP⊥ converges at fourth-order showing the clear advantage of using an accurate Closest Point search. Moreover, this last 
method approximately equals the reference results when using CPex . In the ellipse case, the error measures obtained with 
and without reinterpolation of the level set (eq. (30)) are approximately equal and hence not shown. We can conclude that 
this process does not deteriorate the solution in the general case, while it has a clear benefit for smooth surfaces locally 
homogeneous to a circle.

In this test case the L∞ normal errors are decreased to second-order for both CP methods. This loss of precision com-
pared to the circle case is due to the variation of curvature created by the interpolations from equation (25). This can be 
observed in Fig. 9(b) where we have also plotted the normal deviation error based on the interpolation of the exact curva-
ture computation κex(x) at CPex(x), which is the numerical lower bound that can be attained by any method. All the results 
using any of the CP methods approximately equal this reference curve for L∞,κ̃σ ,n .

Fig. 10 shows a spatial representation of the curvature in the domain for the different methods for R/h = 25.4. We can 
clearly see the effect of the CP algorithm on the extension of the curvature along the normal. Looking closely, the simple 
CP
 method induces non-rectilinear iso-values for the curvature while the CP⊥ method corrects this problem. The exact 
curvature profile obtained with CPex is not shown as it is indistinguishable from the CP⊥ method.

Numerical convergence in the presence of perturbations. Fig. 11 shows the spatial convergence of the closest point error and the 
distance map as a function of R/h with varying perturbations applied to the level set as presented in eq. (33). Summarized 
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Fig. 10. Ellipse geometrical test case: curvature profiles for the different methods. The position of the ellipse is drawn with white dashed lines. The color 
variation goes from blue (κ = 2.5) to red (κ = 10), gray zones represent curvature values outside that interval or outside the computation band for the 
CP methods. The CP⊥ method and the exact curvature profiles are indistinguishable hence the latter is not shown. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

in Table 4, we observe a maximum order 2 for the closest point error measure in the case of the CP
 algorithm while it 
increases to fourth-order for the CP⊥ method. The CP
 method’s distance map has a maximum third-order convergence, 
while the CP⊥ one is up to fourth-order. We believe that the convergence rate is limited because of the errors on the 
computation of ∇φ, on the numerical thresholds used, but more importantly because of the fourth-order interpolation 
functions used. However this fourth-order convergence rate is sufficient in our case and for the applications targeted.

The CP⊥ algorithm we propose in this paper shows a clear benefit compared to the CP
 used in the literature that will 
have an important impact on the order of convergence of the κCP methods studied in the next paragraph.

Computational cost of the closest point algorithms. Fig. 12 shows the mean number of iterations per grid point for the CP

and CP⊥ methods. The use of a fourth-order accurate algorithm requires less than 3 times more iterations than using a 
second-order accurate. This difference is mostly due to the reduced threshold ε from h2 to h4 that is more hardly reached. 
With fourth-order precision, for coarse grids with more errors on the computation of the normal and interpolations, the 
CP⊥ algorithm requires significantly more iterations than the simple CP
 algorithm (around three times for R/h = 12.8). 
This ratio reduces to around 1.6 for a finer mesh. This behavior is expected as the higher the curvature to spatial step ratio, 
the farther away the first CP
 iteration will bring us from the exact closest point. Fig. 13 reports the computation costs in 
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Fig. 11. Ellipse geometrical test case: convergence of the L∞,CP· closest point error (left) and L∞,d· distance map error (right) as a function of R/h in 
the presence of small perturbations for CP
 and the CP⊥ methods. Results for CP
 with O (h3) and O (h4) errors are almost equal to the ones with no 
perturbation thus not shown. Similarly, results for CP⊥ with O (h4) perturbations are not shown.

Table 4
Ellipse geometrical case: approximate orders of convergence of error measures for the two different CP methods and φ perturbations.

Method Perturb. L∞,CP L∞,d

CP
 O (h1) 0 0
CP
 O (h2) 2 2
CP
 O (h3) 2 3
CP
 O (h4) 2 3

Method Perturb. L∞,CP L∞,d

CP⊥ O (h1) 0 0
CP⊥ O (h2) 2 2
CP⊥ O (h3) 3 3
CP⊥ O (h4) 4 4

Fig. 12. Efficiency of the closest point algorithms.

terms of CPU time for the different methods. The use of the fourth-order accurate CP⊥ algorithm against the second-order 
one (the quicker) requires only 1.5 times more computational time for the finer mesh. Moreover, in our fluid solver, the 
most accurate algorithm represents less than 3% of the overall computational time for one iteration.

As the number of grid points grows linearly with the spatial discretization, the use of the CP⊥ with fourth-order precision 
is highly recommended and has a low impact on the computational time.
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Fig. 13. Computational cost of the CP algorithms as a function of the spatial discretization.

4.2.3. Conclusion of the geometrical study
Through this geometrical study on the circle and ellipse cases, we have shown that the CP method attains high order (up 

to 4) spatial convergence on the different error measures guaranteeing numerical accuracy for Criteria 2.1, 2.2 and 2.3 of 
§2.4 and thus for the surface tension driven simulations. The use of a fourth-order κLS computation is also a key in attaining 
this precision and is very important in the reduction of errors in dynamic numerical simulations.

Compared to the CP
 method, the CP⊥ method gains 2 orders of convergence for the curvature’s L2 and L∞ error in the 
general (ellipse) case while only requiring double the number of interpolations. The reinterpolation CP2⊥ method improves 
the error in the normal deviation for the circle, which will help stabilize the static column equilibrium case studied below.

4.3. Static viscous column equilibrium with constant density

The problem of the equilibrium of a 2D column subjected to surface tension forces has been widely used as a reference 
in the literature, for example [39,16,40] propose numerical results and analysis with various methods in VOF or level set 
frameworks. From the Laplace law, without discretization errors, the surface tension forces should not create any current – 
the fluid should be at rest – as they are at equilibrium with the pressure jump between the two phases:

∇p = 1

We
κnδ� (34)

giving a pressure inside the drop of pdrop = σκ when the reference pressure outside is 0.
The Weber number is given as

We = Re · Ca = ρU L

μ
· μU

σ
= ρU 2L

σ
, (35)

with U (resp. L) a reference velocity (resp. length) characterizing the problem. In our problem, L = D , the diameter of the 
column.

Two other relevant non-dimensional numbers are the Laplace and the Ohnesorge number relating the surface tension to 
the viscous forces:

La = σρL

μ2
= Oh−2 = Re2

We
. (36)

The Laplace number characterizes the numerical behavior of the flow computed due to numerical errors on the discretiza-
tion of the surface tension forces, i.e. the errors in the localization δ� of the column’s interface, its normal n and its 
curvature κ will create capillary waves and thus currents that will propagate in the fluids through the viscous term. The 
more viscous the fluid is then the more smoothly the problem will reach equilibrium. At high Laplace numbers, we expect 
the interface between the two phases to oscillate/vibrate around its equilibrium state more rapidly and for a longer time.
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In the following sections, for clarity, we call “velocity” the root mean square of the fluid velocity as:

vrms =
√√√√∫

�

|v(x)|2dx (37)

and the capillary number is defined in absolute value as:

Ca = μ|v|max

σ
. (38)

If not stated differently, vrms is given in the Tσ and Uσ reference frames as defined below.
As shown in [11], applying a constant curvature κexact for the surface tension force in a balanced force CSF framework 

leads to numerical equilibrium instantly, i.e. vrms is of the order of the machine precision. We study below the effect of 
errors on the computation of the curvature.

Origins of the parasitic currents. In [17], the authors analytically demonstrate that, for the static column at equilibrium, the 
parasitic currents are quadratically proportional to the curvature. This is particularly crucial as the numerical errors will 
increase rapidly at small scales and finally dominate the flow. We push their study further by introducing the errors in the 
computation of the volume fraction gradient ∇c = ∇c + β , where ∇c is the exact solution and β represents the numerical 
errors that is not necessarily the gradient of a function. The curvature κ is decomposed in a similar way: κ = κ + κ ′ , 
where κ ′ is the error part. Neglecting the viscous stress tensor and posing ρ = 1 for clarity, the Navier–Stokes equation 
holds:

ut + u · ∇u = −∇p + σκ∇c. (39)

When the disk is at equilibrium, the pressure gradient and the surface tension force are in balance, i.e. ∇p = σκ∇c, equa-
tion (39) becomes:

ut + u · ∇u = σ(κβ + κ ′∇c + κ ′β).

The error term κ ′β is of higher-order and, numerically, the error in the gradient of c is of higher-order than the error on κ
because they are usually derived from the same surface representation. Hence, if we drop those two terms, we find back 
the solution proposed in [17]. This demonstrates the origins of parasitic currents for the disk at equilibrium, dominated by 
the errors in the curvature computation.

Non-dimensional reference frames. All the velocities are given in the velocity scale for the inviscid problem:

Uσ =
√

σ

ρD

as well as the corresponding time scale:

Tσ =
√

ρD3

σ

which is proportional to the period of the capillary waves. We also define the viscous time scale as:

Tμ = D2

μ
.

Time step restriction. As was clearly demonstrated in [41], the stability of flow computations subjected to surface tension is 
limited not by its explicit treatment but by constraints due to the physical propagation of waves. It yields to the following 
condition on the time step:

�tstat
σ ≤ h

ĉσ

√
(ρ1 + ρ2)h3

2πσ

for the static case and

�tdyn
σ ≤ h

ĉσ + uk
�

for the dynamic case, where uk
� is the velocity of the flow at the interface parallel to the capillary wave of number k.

In most of the simulations studied below, we have respected the static time step constraint, however we have observed, 
like detailed in [41], that for problems that are sufficiently smooth, larger time steps can be used without introducing 
instabilities in the computations.
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Table 5
Static column case: numerical results for the finest grid (R/h = 102.4) and approximate global order of convergence for the CP2⊥ method, order 2 and 
order 4 κLS calculation, La = 120. Detailed numerical results are given for varying R/h in Table 11.

(a) Velocity error measures and pressure error.

κLS R/h Ca at t = �t O Ca at tσ = 30 O max Ca O E(�pmean) at tσ = 30 O

Order 2 scheme 102.4 1.19 × 10−8 1.98 1.34 × 10−14 4.93 2.27 × 10−7 1.99 9.91 × 10−7 2.00

Order 4 scheme 102.4 3.74 × 10−11 4.05 2.08 × 10−14 4.30 4.13 × 10−10 3.97 4.24 × 10−10 3.94

(b) Curvature error measures at tσ = 30.

κLS R/h | κmean−κex
κex

| O L∞ curvature error O κσ O L∞ normal dev. O

Order 2 scheme 102.4 9.91 × 10−7 2.00 9.91 × 10−7 2.00 6.31 × 10−11 5.28 1.68 × 10−11 5.09

Order 4 scheme 102.4 4.24 × 10−10 3.94 4.47 × 10−10 3.95 2.30 × 10−11 4.93 1.27 × 10−11 4.57

4.3.1. General configuration
We consider the physical problem of a column of diameter D = 2R = 0.4 centered at the origin of a unit square. The 

density and the viscosity are set to unity: ρ = μ = 1. The Laplace number is thus varied by changing the surface tension 
coefficient σ .

The level set is initialized exactly as

φ(x) = |x| − R.

No symmetry property is used; we compute solutions in the whole domain. No-slip conditions are applied to all boundaries.
The pressure error, considering the reference pressure outside the drop to be zero, is computed as:

E(�pmean) = |p2,mean − p1,mean − pdrop|
pexact

where pi,mean is the mean pressure calculated in the ith fluid by integrating numerically in the whole domain, with i = 2
inside the column:

pi,mean =
∑

p · Hε,i(φ/|∇φ|)∑
Hε,i(φ/|∇φ|)

where Hε,i is the regularized characteristic function associated with the ith phase.

4.3.2. Order 2 and order 4 κLS calculation
We study the dynamic effect of spatial errors due to the κLS computation precision on the CP⊥ method by varying the 

scheme used and the number of grid points. The Laplace number is 120, corresponding to σ = 300, and the time step is set 
to �t = 3 × 10−5 s. The curvature errors and the impact on the fluid velocity are shown in Fig. 14; as time evolution for the 
pressure, the mean curvature and its normal deviation are small, they are not shown. The numerical results are reported in 
details in Appendix A.2, Table 11, and summarized for the finest grid resolution in Table 5.

The results clearly show that, when compared to the second-order scheme, the fourth-order computation of κLS greatly 
reduces the capillary number in the first time steps to order 4 as well as decreases the maximum spurious currents. When 
the approximate numerical equilibrium is reached for all simulations, around tσ = 30, the pressure error also converges at 
fourth-order, as expected from eq. (34) and from the balanced force CSF principle. After tσ = 30, the velocity still declines 
but much less rapidly.

The capillary number converges toward machine precision at an even higher order when spatial discretization tends to 
zero. The RMS velocity follows qualitatively the same behavior thus we do not show it here. It is noticeable that the second 
and fourth-order schemes converge toward the same approximate equilibrium Ca and RMS velocity residual. This is due to 
the physical dynamics of the test case that searches for a numerical equilibrium state, which geometrically depends on h, 
through the level set function displacement by minimizing the standard deviation on the curvature. We see in Fig. 14(c) 
that for the same spatial step h, the approximate minimal κσ is qualitatively independent of the κLS accuracy. However, this 
minimum is reached at around tσ = 1.5 for any discretization of the 4th order scheme, whereas that time is stretching with 
decreasing h for the second-order scheme. As with the latter scheme, more numerical errors are introduced in the early 
stages, and the numerical equilibrium is reached later implying more oscillations of the interface.

Surprisingly, we observe a faster convergence rate on the capillary number at tσ = 30 for the second-order κLS computa-
tion. We believe that at very low resolution such small velocities are close to machine precision and thus very sensitive to 
numerical perturbations, which are non-negligible at these scales. For instance, the maximum velocities for the R/h = 102.4
discretization approximately equals 5 ×10−12 which is of the same order of magnitude as the maximum velocity introduced 
in the flow when applying the constant curvature κex = 1/R .

However, as the curvature and the surface are in better geometrical balance for high-order schemes for κLS (refer to 4.2
for the geometrical convergence analysis), the errors induced in the early time steps and on the maximum capillary number 
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Fig. 14. Static column case: convergence study for the RMS velocity, L∞ curvature error and standard deviation using the CP2⊥ method and order 2 (left) 
and order 4 (right) κLS calculation, La = 120.
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Table 6
Static column case: convergence of capillary number in function of the Laplace number and R/h with the proposed method compared to results from 
[12,13,15,42].

(a) Varying Laplace number at R/h = 6.4.

R/h Ca La

120 1200 12 000 120 000

6.4 At tcap = 250 Proposed method 6.74 × 10−9 6.82 × 10−9 5.42 × 10−7 2.68 × 10−7

[42] 4.59 × 10−7 7.80 × 10−7 2.18 × 10−6 3.00 × 10−6

[12] Cartesian 1.10 × 10−7 1.20 × 10−7 1.44 × 10−6 3.09 × 10−6

[15] 2.18 × 10−6 2.18 × 10−6 2.22 × 10−6 –
[13] 5.71 × 10−6 5.99 × 10−6 8.76 × 10−6 –

At tσ = 80 Proposed method 2.04 × 10−9 1.37 × 10−9 5.02 × 10−10 4.68 × 10−10

12.8 At tσ = 80 Proposed method 9.16 × 10−11 3.58 × 10−11 1.78 × 10−11 1.03 × 10−11

(b) Spatial convergence for La = 12 000 compared to results from the literature.

Ca R/h

6.4 12.8 25.6 51.2

At tcap = 250 Proposed method 5.42 × 10−7 9.21 × 10−9 1.13 × 10−9 6.53 × 10−11

[42] 2.18 × 10−6 2.32 × 10−7 5.91 × 10−8 –
[12] Cartesian 1.44 × 10−6 3.40 × 10−7 5.00 × 10−8 –
[13] 6.68 × 10−6 1.07 × 10−6 1.20 × 10−7 –

At tσ = 20 Proposed method 1.52 × 10−9 4.49 × 10−11 1.72 × 10−12 1.55 × 10−13

are much smaller which will lead to reduced errors in the general case. We see in Figs. 14(a) and 14(b) the proportional 
link between the curvature’s standard deviation and the spurious currents that arise mostly because of κσ . The normal 
deviation for this column case is, as expected, equal for κLS at orders 2 and 4 because of the regularity of the particular 
circular surface as it was shown in §4.2. When the standard deviation becomes stable after 4 half-oscillations, the surface 
oscillates one more time until parasitic currents are damped by viscosity and numerical equilibrium is reached.

The use of a fifth order WENO scheme for the advection of the level set does not change this convergence rate as 
expected (down to order 5 − 2 = 3). We believe that this is due to the smoothness of the level set function and to the very 
small velocities, which introduce errors in φ much less than O (h5), added to the dynamics of the case that searches to 
minimize the geometrical errors. We show in §4.5 how the advection of the level set impacts the appearance of spurious 
currents.

4.3.3. Varying the Laplace number
We study the effect of a varying the Laplace number by changing the surface tension coefficient σ at fixed density and 

viscosity. Augmenting La will make the interface response to numerical errors “stiffer” thus reaching a stable state after a 
longer time in the Tσ reference frame.

Here we used the CP2⊥ method with a 4th order κLS and the spatial discretization is R/h = 6.4. Because of 
the varying surface tension coefficient, the time step is adapted as �t = {3, 1, 0.3, 0.1} × 10−4 respectively for La =
{120, 1200, 12 000, 120 000}.

We have summarized and compared the numerical results to the ones from the literature in Table 6 where we can see 
that the spurious currents obtained are much smaller for the ratio R/h = 6.4. Moreover, the convergence rate with respect 
to h is also much higher. Note that in these references Ca is computed at tcap = tσ/(Dμ) = 250, a time when the simulation 
has not converged to equilibrium velocity, which as we observed in our simulations (see Fig. 15(a)), is around tcap = 25 000
for La = 120 000. Thus the velocity at that time is still oscillating significantly toward equilibrium and is not minimum as 
shown in Fig. 15(b). Consequently, we have given a new table of Ca number for different tσ = t/Tσ (when the velocity is 
stabilized), which we believe is more representative.

The results obtained for R/h = 6.4 suffer from excessively coarse spatial discretization as the regularization width is 
ε = 2h � 0.3 R . Thus we propose to study the case where R/h = 12.8 for which we show more complete numerical results in 
Fig. 15, where �t has been divided by 3. The results are qualitatively equivalent those obtained by [14] in a VOF framework 
for the same discretization. However, the velocity RMS is approximately 20 times smaller in our case thanks to the higher 
order of convergence of the curvature error of the CP⊥ method. This difference will increase rapidly with finer discretization. 
As expected, increasing the Laplace number makes the interface stiffer and takes more time to reach equilibrium, where the 
oscillations observed converge toward an approximate period of 0.44 Tσ .

We observe in Figs. 16(c) and 16(d) a reduction of the curvature error measures when augmenting La. The Ca curve 
follows the standard and normal deviations showing the importance of those two criteria in the reduction of spurious 
currents. This is consistent with the idea that a higher surface tension coefficient makes the surface response stiffer, thus 
impacting the level set’s movement in the vicinity of � making it numerically more homogeneous.
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Fig. 15. Static column case: convergence study using the CP2⊥ method and order 4 κLS calculation in the Tcap (left) and Tσ (right) reference frames.

4.4. Static viscous column equilibrium with variable density

In order to study how the method performs in general fluid simulations, we study the effect of surface tension on the 
column problem with a variable density.

4.4.1. General configuration
We take exactly the same configuration as in §4.3 but change the density ρ1 of the fluid inside the column while keeping 

the density outside ρ2 fixed and σ constant. This has the effect of increasing the Laplace number. As ρ2 does not change, 
the time step is restricted by this lower bound and we fixed �t = 1 × 10−4. However, for increasing density, we observed in 
the first time steps a large error in the velocity field that we believe is due to the quick diffusion of the initial errors on the 
surface tension term by the reduced kinematic viscosity ν = μ/ρ . To counter this phenomenon, we reduced �t to 1 × 10−6

for the first hundred computational steps, leaving time for the simulation to stabilize, and then smoothly increased it to 
1 × 10−4.

4.4.2. Varying the density
The surface tension coefficient is set to 300 while the density is varied as ρ1 = {1, 10, 100, 1000} with corresponding 

Laplace numbers La = {120, 660, 6060, 60 060}, calculated as:

Laρ1,ρ2 = σρL

μ2
(40)
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Fig. 16. Static column case: convergence study by varying the Laplace number using the CP2⊥ method and order 4 κLS calculation with R/h = 12.8.
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Fig. 17. Static column case with variable density: convergence study for the RMS of the velocity and Ca number by varying the density inside the column 
using the CP2⊥ method and order 4 κLS with R/h = 12.8.

with

ρ = ρ1 + ρ2

2
.

The reference scales Tσ and Uσ are defined with that same mean density.
Fig. 17 shows coherent results for the constant density test in §4.3 that demonstrates the stability and accuracy of the 

method in the presence of variable density.

4.5. Advected viscous column equilibrium

In these test cases, we study the impact of the errors due to the advection of the surface through the level set advection 
by an initial constant velocity field. Theoretically, in the reference frame of the transported column, the spurious currents 
should tend to zero. Due to the grid aliasing effect and advection errors we expect the interface to reach equilibrium with 
more difficulty, while still creating minimized spurious currents.

4.5.1. General configuration
The fluid parameters used are the same as in §4.3: ρ = μ = 1 in the two phases. The domain is a rectangle of size 

[1, 2] with symmetry conditions for the top and bottom boundaries, and periodic conditions in the horizontal direction. 
The column has a radius of R = 0.2. We initialized the x-velocity to Ux = 2 in the whole domain so that, ideally, the 
velocity field should remain U = (Ux, 0) through time. The spurious currents are measured in the column reference frame 
and calculated as:

vrms =
√√√√∫

�

|v(x) − U|2dx

and

Ca = μ|v − U|max

σ
.

All the velocities are given in the velocity scale for the advection problem:

Uadv = √
Uσ · Ux

as well as the corresponding time scale:

Tadv = D/Ux.

The CFL involved here will be much larger than the time step restriction due to surface tension: �tCFL � �tσ .
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Table 7
Advected column case: numerical results for varying R/h and approximate order of convergence for the CP2⊥ method and order 4 κLS calculation. Mean 
measures are taken in the intervals tadv ∈ [0.06, 0.2] for La = 1200 and tadv ∈ [0.03, 0.1] for La = 12 000, vrms is given in the Uadv reference frame.

La R/h Mean vrms O Mean Ca O max Ca O max Ca
mean Ca

1200 6.4 7.83 × 10−5 – 1.23 × 10−6 – 1.05 × 10−5 – 8.53
12.8 2.02 × 10−6 5.28 3.73 × 10−8 5.04 7.57 × 10−7 3.79 20.27
25.6 6.94 × 10−8 4.86 1.56 × 10−9 4.58 4.87 × 10−8 3.96 31.20
51.2 3.65 × 10−9 4.25 1.10 × 10−10 3.83 3.07 × 10−9 3.99 28.02

102.4 1.17 × 10−10 4.96 5.00 × 10−12 4.46 1.91 × 10−10 4.01 38.27

12 000 6.4 3.86 × 10−4 – 1.10 × 10−6 – 3.93 × 10−6 – 3.56
12.8 5.38 × 10−6 6.16 1.55 × 10−8 6.16 2.89 × 10−7 3.77 18.66
25.6 3.11 × 10−7 4.11 9.90 × 10−10 3.97 1.90 × 10−8 3.92 19.23
51.2 2.81 × 10−8 3.47 1.02 × 10−10 3.27 1.19 × 10−9 4.00 11.60

102.4 7.35 × 10−10 5.26 3.02 × 10−12 5.08 7.57 × 10−11 3.97 25.08

4.5.2. Spatial convergence
We study the impact of the advection error of the level set coupled with the errors due to the surface representation and 

curvature calculation by varying the spatial discretization in the same manner as in §4.3. This case was first introduced by 
Popinet et al. in [14] in a VOF method with Height Function curvature framework. We set �t = 3 × 10−6 for the La = 1200
simulations and �t = 1 × 10−6 for La = 12 000, except for the R/h = 102.4 discretization where we divided �t by three to 
avoid instabilities.

As shown in Fig. 18, for early times, we observe the same numerical results as in §4.3, as the errors dominating here 
are due to the fact that the interface is not at equilibrium. After time tadv = 0.04 (resp. tadv = 0.02) for La = 1200 (resp. 
La = 12 000) we clearly observe the effects of the errors on the advection perturbing the interface and the curvature in small 
oscillations around the equilibrium state. The period of these perturbations is of scale 1/h in the Tadv reference frame. This 
result is due to aliasing where the interface (i.e. the level set) suffers from approximately the same numerical discretization 
aliasing every time it has been translated by one cell. This observation coincides with the remarks given in [14]. Yet our 
method for advection and curvature calculation is more precise since the errors in the spurious currents are much smaller 
(by a factor around 3 × 10−4 for the R/h = 12.8 discretization), as shown in Fig. 18 and Table 7.

The simulations never reach a non-oscillating equilibrium, so we computed mean values for the velocity’s RMS and Ca
in the interval tadv = [0.06, 0.2] for La = 1200 and tadv = [0.03, 0.1] for La = 12 000. The mean capillary number computed 
at equilibrium is much higher than the one for the static case. The ratio max Ca

mean Ca gives a good indication of how the method 
efficiently manages to reduce the spurious currents counteracting the errors constantly introduced into the level set. The 
curvature error measures presented in Fig. 18(c) were also computed as a mean in the interval tadv = [0.06, 0.2] for La =
1200. The orders of convergence are approximately equal to 4 for the L∞ and standard deviation, and between 3.5 and 4
for the normal deviation, a reduction for the later that is due to the 5th order WENO advection scheme as expected by 
Proposition 1.

We observe in Fig. 18(a) two different regimes: the first one where the non-equilibrated geometric circle tends to find 
its equilibrium, followed by a second one where the errors in solving the φ transport equation become dominant and work 
against reaching the converged equilibrium as studied in §4.3. The peak capillary number converges at order 4 as observed 
previously in §14 while the mean vrms and the mean Ca converge between the orders 4 and 5, which is notably higher 
than the results obtained for the static case in §4.3. We observe in Fig. 18(a) higher amplitudes for Ca in the transport 
error regime (compared to the initial geometry equilibrium search regime) for coarser resolutions where the grid aliasing 
is bigger and the order 2 Navier–Stokes errors are more present. Hence the errors on the velocities reduce even more as 
h → 0, and converge faster toward the “optimum” reference values fixed by the static case results thus attaining an order 
of convergence higher than 4.

As shown in Fig. 18(c), the spatial convergences for the capillary number (similar to the RMS velocity) is at least order 
4 which is 3 orders of magnitude better than the L2 norm presented in [14]; their L∞ errors do not show convergence 
while ours, through the Ca number, is better than fourth-order. This clearly demonstrates that the use of a high-order 
advection scheme coupled with high-order curvature extension is necessary to reduce the spurious currents in general flow 
simulations.

4.6. Zero gravity drop oscillation

In order to study the dynamic behavior of our method in the presence of non-constant curvature, we measured the 
oscillation period of a non-circular drop. The analytical results proposed in [43] were studied numerically in [12,4,44] and 
[45] in various frameworks.

A 2D circular droplet is perturbed by a cosine function of mode n and amplitude A0. The theoretical oscillation period 
ω as given by [43] is:

ω2 = n(n2 − 1)σ

(ρ1 + ρ2)R3
0

where ρ1 (resp. ρ2) is the density of the fluid inside the droplet (resp. outside).
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Fig. 18. Advected column case: convergence study for the RMS velocity, Ca and curvature error measures for the CP2⊥ method and order 4 κLS computation, 
in the Uadv and Tadv reference frames.
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Table 8
Spatial convergence of the oscillation error for the zero gravity drop oscillation, compared to the analytical solution from [43]. The value for Tcalc at 
R/h = ∞ with our method has been computed with a Richardson’s extrapolation.

Eω R/h

6.4 O 12.8 O 25.6 O

[12] Cartesian 4.04 × 10−2 – 1.05 × 10−2 1.94 0.37 × 10−2 1.5
[45] 13.2 × 10−2 – 6.1 × 10−2 1.11 1.5 × 10−2 2.02
Proposed method, 2nd order, eq. (31) 26.6 × 10−2 – 8.30 × 10−2 1.68 2.99 × 10−2 1.47
Proposed method, 4th order, eq. (31) 6.57 × 10−2 – 2.74 × 10−2 1.26 0.54 × 10−2 2.34
Proposed method, 4th order, eq. (32) 6.29 × 10−2 – 2.68 × 10−2 1.23 0.53 × 10−2 2.33

Tcalc R/h

6.4 12.8 25.6 O ∞
Proposed method, 2nd order, eq. (31) 9.233 7.896 7.510 1.95 7.376
Proposed method, 4th order, eq. (31) 7.770 7.491 7.331 1.84 7.269
Proposed method, 4th order, eq. (32) 7.750 7.487 7.330 1.85 7.270
Analytical [43] – – – – 7.29138

4.6.1. General configuration
An initial column of radius R0 = 2 is placed in the center of a [−10, 10] square box with slip boundary conditions. The 

surface tension coefficient is fixed to σ = 1 and the physical parameters ρ1 = 1, ρ2 = 0.01, μ1 = 0.01 and μ2 = 1 · 10−4

which from eq. (40) corresponds to La ≈ 80 000. The column is perturbed by a cosine function which we translated in the 
level set representation as:

φ(x) = |x| − (R0 + A0 cos(nθ))

where we set A0 = 0.01 R0 and n = 2. The time step was chosen as �t = 3 · 10−3.

4.6.2. Spatial convergence
Table 8 shows a comparison of the results in the literature with the results obtained by our method. The oscillation error 

is calculated as Eω =
∣∣∣ Tcalcω

2π − 1
∣∣∣ with Tcalc measured between the picks in the surface minimum x position, averaged over 

the 3 first periods. We show the impact of the precision of the Closest Point computation (with a corresponding threshold 
of ε = h2), the interpolation functions and κLS on the accuracy of the results which, for the most precise method, show an 
improvement by a factor of approximately 3 compared to [45] while the error is around 1.5 times higher compared to [12]. 
This difference can be explained by the sensitivity of these numerical results to the fluid solver and the different parameters, 
like for example the regularization parameter for the Heaviside function which is not given in [12] or the number of periods 
used for the measurements. We see an approximate second-order of convergence for the oscillation error.

As the oscillation error measures the dynamic behavior of the drop, we do not expect orders of convergence as high as 
the error on spurious currents. Indeed, in this more complex simulation, the errors are dominated by the flow solver which 
is restricted to second-order. However, we clearly observe on the error reduction the interest of computing the curvature 
extension up to a fourth-order accuracy. Particularly, the second-order method has higher error (3 to 5 times) compared 
to the fourth-order. Fig. 19 shows a better dynamical behavior when using the high order scheme, particularly for the 
low resolution R/h = 6.4 where the less accurate method leads to non-smooth oscillations with increasing amplitude. As 
expected, this demonstrates the clear advantage of using high order numerical methods, particularly when the curvature is 
large relatively to the spatial discretization.

Moreover, the theory is based on a linear regime study in an infinite fluid and so complex numerical conditions for the 
simulation may never converge to the analytical result but more toward a numerical equilibrium. The oscillation period 
extrapolated with Richardson’s method on our measures is 7.270 which yields close to second-order spatial convergence, as 
expected by the fluid solver limitation.

4.7. 2D bubble rise

4.7.1. General configuration
For this study we used the CP2⊥ algorithm and order 4 κLS calculation.
We consider the rise of a 2D bubble under the effect of buoyancy following [46,16] numerical studies. A disc of diameter 

D = 0.5 lies at position [0.5, 0.5] at t = 0, inside a domain of size [0, 0] × [1, 2] with no-slip conditions on top and bottom 
walls and free-slip on left and right boundaries. The densities and viscosities inside (resp. outside) the bubble are ρ2 and 
μ2 (resp. ρ1 and μ1) and the gravity is set to 0.98.

The reference length is Lrise = D = 0.5 with an associated time scale of Trise = Lrise/Urise and Urise = √
g D .
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Fig. 19. Spatial convergence of the oscillation for the zero gravity, compared to the analytical solution from [43], minimum height of the interface over 
time. The theoretical oscillation is plotted as reference, without the damping of the amplitude.

Table 9
2D bubble rise case: physical parameters.

Case ρ1 ρ2 μ1 μ2 σ

A 1000 100 10 1 24.5
B 1000 1 10 0.1 1.96

We study the evolution of the center of mass of the bubble as numerically computed in the whole domain:

(xc, yc) =
∑

x Hε(φ/|∇φ|)∑
Hε(φ/|∇φ|) .

The rising bubble velocity is computed in a similar fashion as:

(uc, vc) =
∑

u Hε(φ/|∇φ|)∑
Hε(φ/|∇φ|) .

The circularity shows information on the deformation of the bubble surface and is written:

c = π D

perimeter
(41)

where the perimeter is numerically calculated with:

perimeter = h2
∑

δε(φ/|∇φ|). (42)

The time step used in all simulations is �t = 3 × 10−4.

4.7.2. Spatial convergence
As seen in [16] for a finite element and level set framework, we propose to study the accuracy of the method in 

comparison to the numerical benchmark presented in [46] with various numerical methods. The numerical results compared 
in this test case have to be taken with care: they were obtained with multiple flow solvers that have different spatial and 
temporal discretization schemes. Moreover, the results in [46] presented here are obtained from extrapolation of numerical 
data, not theoretical nor experimental reference values.

The physical parameters of the two reference cases are presented in Table 9.
The numerical results for test case A are illustrated in Fig. 20 and summarized and compared to the literature in Table 10. 

They are in good agreement with the reference benchmark permitting us to validate our method for this rising bubble case. 
The maximum velocity of the bubble and the time it arises both fit the reference values and converge at the order 2. 
However, we observe a more important difference in the bubble circularity and center of mass between our results and 
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Fig. 20. 2D bubble rise case A: center of mass, circularity, rise velocity and bubble’s shape at t = 3 for R/h = 80. Extremum results from [46,16] are drawn 
as lines.

Table 10
2D bubble rise case: numerical results compared to [46,16].

(a) Comparative results with CP⊥ and order 4 κLS , for R/h = 80.

Measure Proposed method [16] coupled method Ref. [46]

cmin 0.914 0.89955 0.9012 ± 0.0001
t|c = cmin 1.817 1.909 1.9
vc,max 0.2421 0.24190 0.2419 ± 0.0002
t|v = vc,max 0.9222 0.929 0.921 ≤ t ≤ 0.932
yc |t = 3 1.0761 1.07989 1.081 ± 0.001

(b) Results with the proposed method and the simple κLS method with no curvature extension, varying R/h. The 
order of convergence is computed by comparing the numerical results for the two finest discretizations to 
Richardson’s extrapolation.

Measure R/h Richardson’s 
extrapolation

O

10 20 40 80

Proposed method
cmin 0.976 0.931 0.924 0.914 0.910 1.8
t|c = cmin 1.769 1.934 1.806 1.817 1.826 1.2
vc,max 0.2385 0.2411 0.2419 0.2421 0.2422 2.0
t|v = vc,max 0.9435 0.9282 0.9237 0.9222 0.9217 1.9
yc |t = 3 1.0587 1.0635 1.0708 1.0746 1.0761 1.8

the benchmark than in [16] for the same discretization. First, the circularity is computed in a level set framework from 
equations (41) and (42) which is as challenging as in a Eulerian framework it involves the regularized singular Dirac mass 
thus bringing oscillations because of the aliasing due to the grid. Therefore the computation of the value cmin and the 
measure of the time it takes to reach it is sensitive. We also observe a lower center of mass at t = 3.
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Fig. 21. 2D bubble rise case B: bubble shape for different times and for R/h = 80.

We believe that the numerical deviations come from the multiple differences in the numerical schemes and approxima-
tions used. We also believe that a better precision in the curvature computation at small scales with our method, as shown 
in §4.6, particularly on the bottom left and right corners where the curvature becomes high, helps to keep the bubble more 
circular showing more resistance to the vertical motion.

Fig. 21 shows qualitative results for test case B through the plots of the bubble’s surface, simulated with a R/h = 80
discretization. In the early time-steps, t < 2.2, we see a similar behavior of this bubble to the one presented in [46]. After 
t = 2.2 we observe wider dragged filaments that resist reduction whereas in [46] the filaments disappear in the flow as 
residual small bubbles with the TP2D (finite elements and level set with reinitialization) method and are reduced to very 
thin filaments with MoonNMD (finite elements with a Lagrangian surface representation) and Fluent. We believe that the 
wider filaments we observe are due to:

1. The use of a regularized surface of width ε = 2h that smooths the blending zone and thus the dynamics of the bubble. 
This zone gets finer as h → 0, though it does not disappear.

2. The more accurate computation of κ in high curvature areas, i.e. where the filaments arise, there is a more precise 
computation of the surface tension force preventing early decomposition of the surface.

5. Conclusion

In this article we present an improved method for the accurate computation of curvature in a level set framework. 
A complementary predicate (Criterion 2.3) concerning the normal deviation of the curvature in the CSF approach has been 
introduced and analyzed. We have studied the effect of perturbations on the surface’s representation showing that it is 
necessary to use high-order transport techniques to calculate accurate and steady surface tension forces in a dynamic flow.

We illustrate the curvature calculation in a level set representation to demonstrate the necessity of an adequate cur-
vature extension. The method proposed is based on a Closest Point algorithm improved with the colinearity criterion and 
reinterpolation. It yields fourth-order precision closest point approximation, enough to obtain fourth-order precision for the 
curvature error and standard deviation, and second-order precision for the normal error in general geometry. The algo-
rithm is easy to implement, compared to Height Function methods in a VOF framework [18] and later works. It is also 
straightforward to extend to three dimensions while not being too computationally costly.
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Fig. 22. Second derivative errors in the presence of perturbations. Note that the y axis for the second derivatives plots have different scales.

We validate our approach on geometric, static, translating and complex dynamical cases in comparison to the literature. 
In particular we show that fourth-order accurate computation of curvature and surface tension forces can greatly reduce 
spurious currents even when the surface is transported, although the flow solver remains second-order accurate. We also 
observe good agreement of our numerical results with state-of-the-art complex simulations like the rise of a bubble.
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Appendix A

A.1. Second derivative error amplitude

In this paragraph we study the effect of numerical errors on derivatives through the introduction of perturbations in an 
analytical smooth function ψ . Let ψ , e and φ be three R → R functions defined as:
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ψ(x) = cos(2πx),

e(x,h,m) = hm cos(2πx/h),

φ(x,h,m) = cos(2πx) + hm cos(2πx/h),

as represented in Fig. 22. We can easily calculate the second derivative of φ:

∂2φ

∂x2
= −4π2(sin(2πx) + hm−2 sin(2πx/h))

which is equal to ∂2ψ

∂x2 perturbed at the scale h with an amplitude of the order hm−2.
The error in the second derivative is measured by:

error(x,h,m) =
∣∣∣∣∂2φ/∂x2 − ∂2ψ/∂x2

∂2ψ/∂x2

∣∣∣∣
when ∂2ψ/∂x2 �= 0 and is plotted in Fig. 22 for different perturbations scales. We clearly see that perturbations bigger than 
h2 lead to errors superior to 1 on the second derivative which is unpropitious in numerical computations.

A.2. Detailed numerical results

Table 11
Static column case: numerical results in function of R/h and order of convergence for the CP2⊥ method, order 2 and order 4 κLS calculation, La = 120.

(a) Velocity errors measures and pressure error.

κLS R/h Ca at t = �t O Ca at tσ = 30 O max Ca O E(�pmean) at tσ = 30 O

Order 2 scheme 6.4 2.02 × 10−6 – 6.59 × 10−9 – 4.83 × 10−5 – 3.05 × 10−4 –
12.8 6.60 × 10−7 1.62 1.96 × 10−10 5.07 1.38 × 10−5 1.81 6.71 × 10−5 2.18
25.6 1.82 × 10−7 1.86 9.73 × 10−12 4.33 3.60 × 10−6 1.94 1.60 × 10−5 2.07
51.2 4.72 × 10−8 1.95 4.09 × 10−13 4.57 9.03 × 10−7 1.99 3.96 × 10−6 2.01

102.4 1.19 × 10−8 1.98 1.34 × 10−14 4.93 2.27 × 10−7 1.99 9.91 × 10−7 2.00

Order 4 scheme 6.4 1.50 × 10−6 – 5.26 × 10−9 – 2.43 × 10−5 – 2.63 × 10−5 –
12.8 1.30 × 10−7 3.53 1.47 × 10−10 5.16 1.67 × 10−6 3.87 3.55 × 10−6 2.89
25.6 9.29 × 10−9 3.81 7.58 × 10−12 4.28 1.05 × 10−7 3.98 1.75 × 10−7 4.35
51.2 6.20 × 10−10 3.90 4.11 × 10−13 4.21 6.47 × 10−9 4.03 6.52 × 10−9 4.74

102.4 3.74 × 10−11 4.05 2.08 × 10−14 4.30 4.13 × 10−10 3.97 4.24 × 10−10 3.94

(b) Curvature error measures at tσ = 30.

κLS R/h | κmean−κex
κex

| O L∞ curvature error O κσ O L∞ normal dev. O

Order 2 scheme 6.4 3.05 × 10−4 – 3.10 × 10−4 – 1.01 × 10−5 – 2.65 × 10−6 –
12.8 6.71 × 10−5 2.19 6.73 × 10−5 2.20 4.60 × 10−7 4.45 1.18 × 10−7 4.49
25.6 1.60 × 10−5 2.07 1.60 × 10−5 2.07 4.54 × 10−8 3.34 1.14 × 10−8 3.36
51.2 3.96 × 10−6 2.01 3.96 × 10−6 2.01 2.45 × 10−9 4.21 5.71 × 10−10 4.32

102.4 9.91 × 10−7 2.00 9.91 × 10−7 2.00 6.31 × 10−11 5.28 1.68 × 10−11 5.09

Order 4 scheme 6.4 2.66 × 10−5 – 2.97 × 10−5 – 6.92 × 10−6 – 1.85 × 10−6 –
12.8 3.56 × 10−6 2.90 3.66 × 10−6 3.02 2.39 × 10−7 4.86 6.52 × 10−8 4.82
25.6 1.75 × 10−7 4.35 1.83 × 10−7 4.32 1.80 × 10−8 3.73 6.96 × 10−9 3.23
51.2 6.51 × 10−9 4.74 6.90 × 10−9 4.73 7.02 × 10−10 4.68 3.02 × 10−10 4.53

102.4 4.24 × 10−10 3.94 4.47 × 10−10 3.95 2.30 × 10−11 4.93 1.27 × 10−11 4.57
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Moment-of-Fluid (MoF) is a piecewise linear interface reconstruction method that tracks 
fluid through its volume fraction and centroid, which are deduced from the zeroth 
and first moments. We present a method that replaces the original minimization 
stage by an analytic reconstruction algorithm on bi-dimensional Cartesian grids. This 
algorithm provides accurate results for a lower computational cost than the original 
minimization algorithm. When more than two fluids are involved, this algorithm can be 
used coupled with the minimization algorithm. Although this paper deals with Cartesian 
grids, everything remains valid for any meshes that are made of rectangular cells.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Moment-of-Fluid (MoF) [1–12] is a method to represent and reconstruct interfaces in multiphase flow simulation. This 
method is the apex of the Volume-of-Fluid (VoF) methods using piecewise linear interface reconstruction [13,14]. MoF rep-
resents the interfaces with the first two moments of any material subset ω in a polygonal cell �, namely the volume M0(ω)

and the first momentum M1(ω).

M0(ω) =
∫
ω

dx M1(ω) =
∫
ω

xdx (1)

Sometimes it is more convenient to use their relative equivalent quantities, namely the volume fraction μ(ω) and the 
centroid xc(ω).

μ(ω) = M0(ω)

M0(�)
xc(ω) = M1(ω)

M0(ω)
(2)

MoF consists in finding a polygonal approximation ω� of a reference subset ω� (see Fig. 1). The part of the boundary 
�� = ∂ω� \ ∂� is an affine approximation of the reference interface �� = ∂ω� \ ∂�. Furthermore, ω� verifies the following 
minimization problem:

Find ω� = argmin
ω�

|xc(ω
�) − xc(ω

�)|2 such that M0(ω
�) = M0(ω

�) (3)
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Fig. 1. Reference subset (left) and reconstructed subset (right).

In the remainder of this article, we use the following notations: the geometric elements with a � in exponent refer to 
the reference configuration, the geometric elements with an � in exponent refer to the solution of problem (3) and the 
geometric elements without an exponent refer to any affine approximation.

Since the seminal publications [1–4], MoF has been adapted to specific applications. For instance, MoF has been exploited 
in an adaptive mesh refinement (AMR) context [5], used in arbitrary Lagrangian–Eulerian (ALE) schemes [6,8], coupled with 
level-set representation of multiphase flow [9], used in compressible multiphase flow [11], and adapted to axisymmetric 
coordinates [15] or in cylindrical geometry with an ALE approach [16]. Moreover, the accuracy of MoF has been improved 
thanks to the symmetric reconstruction [10] or with the introduction of filament capturing [12].

This article focuses on the implementation of MoF reconstruction on bi-dimensional Cartesian grids or any meshes 
composed of rectangular cells, which are widely used in computational fluid dynamics. While classic implementations use 
a time consuming minimization algorithm to solve the minimization problem, we propose a faster analytic reconstruction 
formula which takes advantage of the shape of the cells. The next section presents the demonstration of this analytic 
formula in two steps. First, we propose a parametrization of the locus of the centroids in a fixed volume. We show that this 
curve can be parametrized by four parabolas and four hyperbolas. Second, we find the minimal distance of the reference 
centroid to the curve with an orthogonal projection. This involves the computation of the minimal distance from a point 
to a hyperbola and to a parabola. In the remainder of this article, in section 3, we propose an analytical algorithm where 
we have reduced the search of the minimal distance to two parabolas and one hyperbola. In section 4, we discuss about 
existence and uniqueness of a solution. In section 5, we compare the proposed algorithm to the original minimization 
algorithm.

2. Analytic reconstruction

2.1. Description

Consider a rectangular cell of dimension (cx, c y) such as represented in the center of Fig. 2. The locus of the centroids 
xc(ω) := (gx, g y) for a given reference volume V := M0(ω

�) is a closed convex curve. In Fig. 2, we have represented the locus 
of the centroids for various reference volumes such that V ≤ 0.5cxc y . We observe 8 different configurations. 4 configurations 
where the reconstructed polygon is a triangle (odd numbers on the figure) and 4 configurations where the reconstructed 
polygon is a quadrangle (even numbers on the figure). Only the first two configurations can be considered since any other 
configuration can be transformed into the first two by symmetry and/or inverting the role of cx and c y . In paragraph §2.2, 
we prove that when the reconstructed polygon is a triangle, the locus is a hyperbola H and when the reconstructed polygon 
is a quadrangle, the locus is a parabola P . When V > 0.5cxc y , the method can be applied on the dual (or complementary) 
configuration ω̃� := � \ ω� , that is, we consider the volume M0(ω̃

�) = M0(�) − V and the first momentum M1(ω̃
�) =

M1(�) − M1(ω
�).

2.2. Parametrization

The reconstructed line segment � can be defined with two parameters, namely the interface normal (nx, ny) and the 
distance to the origin ξ , that is:

� = {(x, y) ∈ � / nxx + ny y = ξ} (4)

In the triangle configuration, � intersects the bottom edge of the cell in 0 < α ≤ cx and the left edge of the cell in 0 < β ≤ c y
(see Fig. 3). For a given reference volume V and a normal (nx, ny), the intersection coordinates are given by:

α =
√

2V
ny

nx
β =

√
2V

nx

ny
(5)
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Fig. 2. Representation of the different configurations of the locus of the centroids (cyan) in a rectangular cell of dimension (cx, c y) for various reference 
volumes V such that V ≤ 0.5cxc y . Depending on the reconstructed polygon, the locus is either a hyperbola H or a parabola P . (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Parametrization of triangle and quadrangle configurations.

The coordinates of the triangle centroid are given by:

gx = 1

3

√
2V

ny

nx
g y = 1

3

√
2V

nx

ny
(6)

To express g y as a function of gx , we substitute nx/ny which gives an equation of a hyperbola:

g y := H(gx) = 2V

9

1

gx
(7)

The validity domain of this formula is given for the limit cases when β = c y and when α = cx . Simple calculations give:

gx ∈
[

2V

3cx
,

cx

3

]
(8)

In the quadrangle configuration, � intersects the left edge of the cell in 0 < γ ≤ c y and the right edge of the cell in 
0 < δ ≤ c y (see Fig. 3). For a given reference volume V and a normal (nx, ny), the intersection coordinates are given by:

γ = V

cx
+ nxcx

2ny
δ = V

cx
− nxcx

2ny
(9)

The coordinates of the quadrangle centroid are given by:
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Fig. 4. Find the closest point (gx, gy) of a point (px, p y) to the locus of the centroid in triangle and quadrangle configurations.

gx =
(

1

2
− c2

x

12V

nx

ny

)
cx g y =

(
V

2c2
x

+ c2
x

24V

n2
x

n2
y

)
cx (10)

To express g y as a function of gx , we substitute nx/ny which gives an equation of a parabola:

g y := P(gx) = V

2cx
+ 6V

cx

(
1

2
− gx

cx

)2

(11)

The validity domain of this formula is given when the curve is not a hyperbola, i.e.:

gx ∈
[

cx

3
,

2cx

3

]
(12)

Note that it is easy to check that the global curve defined by the union of all the parabolas and hyperbolas is three times 
differentiable, but the third derivative is not continuous.

We have shown that the locus of the centroid can be parametrized by four parabolas and four hyperbolas. In the next 
paragraph, we present how to find the minimal distance from the reference centroid to the various parts of the curve to 
find the global minimum.

2.3. Minimal distance

The minimal distance from any point (px, p y) ∈ R2 to the locus of the centroid is its closest orthogonal projection (see 
Fig. 4). Since the curve is defined by parts, we need to express the minimal distance from any point to each part. The 
orthogonal projection (gx, g y) = (gx, H(gx)) of the point (px, p y) on the hyperbola H verifies the following equation.

(gx − px,H(gx) − p y) · (1,H′(gx)) = 0 (13)

This equation is the expression of the orthogonality of the vector defined by the point and its orthogonal projection with 
the tangent to the curve. Replacing H by its value (7) reveals a quartic equation on the coordinate gx such that one of the 
real roots is the closest orthogonal projection.

g4
x − px g3

x + 2

9
V p y gx −

(
2V

9

)2

= 0 (14)

The same process can be applied to find the orthogonal projection (gx, g y) = (gx, P(gx)) of the point (px, p y) on the 
parabola P . The orthogonal projection verifies the following equation.

(gx − px,P(gx) − p y) · (1,P ′(gx)) = 0 (15)

Substituting P by its expression (11) unveils a cubic equation on gx .

gx − px − 12V

c2
x

(
1

2
− gx

cx

)(
V

2cx
− p y

)
− 72V 2

c3
x

(
1

2
− gx

cx

)3

= 0 (16)

The dependence of equations (14) and (16) on so many parameters (px , p y , cx , c y and V ) makes it tricky to find the 
root that gives the closest orthogonal projection. The simplest way to find it is to compute all the roots and eliminate the 
roots outside their defined domain and find the one that gives the closest orthogonal projection. In our implementation, we 
use the algorithms proposed in [17] and [18] to accurately compute the cubic and quartic roots.

In the following paragraph, we define the transformations to solve the problem on any configuration.
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2.4. Generalization to any configuration

As mentioned in paragraph §2.1, we have only considered a “reference configuration” where V ≤ 0.5cxc y and where 
the reference centroid belongs to one of the two first configurations (1 and 2) represented on Fig. 2. Here, we provide the 
formulas to transform any configuration into one of these two reference configurations and to transform the results back to 
the original configuration. In the following, we denote by xc(ω

�) = (px, p y) the reference centroid. All the coordinates are 
expressed in the cell referential where the origin corresponds to the bottom left corner.

We consider that we have two algorithms to handle problems 1 and 2 that take the cell dimensions (cx, c y) and the 
coordinates of the reference centroid (px, p y) as input parameters. The output data are the coordinates of the normal 
(nx, ny). Using some transformations, it is possible to use this algorithm to solve any other problems.

If the reference volume is greater than the half of the cell volume V > 0.5cxc y , consider the dual volume M0(ω̃
�) =

cxc y − V and the dual reference centroid xc(ω̃
�) = (cxc y(cx/2, c y/2) − V (px, p y))/(cxc y − V ).

For problems 3 to 8, use the following transformations for input parameters and output data:

• Problems 3 and 4: cell dimensions (c y, cx), centroid coordinates (p y, cx − px), normal (−ny, nx).
• Problems 5 and 6: cell dimensions (cx, c y), centroid coordinates (cx − px, c y − p y), normal (−nx, −ny).
• Problems 7 and 8: cell dimensions (c y, cx), centroid coordinates (c y − p y, cx), normal (ny, −nx).

In the next section, we use the above preliminary work to propose an algorithm that replaces the original minimization 
algorithm to find the minimal distance from the reference centroid to the locus of the centroids.

3. Algorithm

The following algorithm computes the closest point xc(ω
�) = (gx, g y) of any reference centroid xc(ω

�) = (px, p y) on the 
locus of the centroids for a given volume V .

Step 1. If the volume of fluid is greater than the half of the cell volume V > 0.5cxc y , consider the dual volume M0(ω̃�) =
cxc y − V and the dual reference centroid xc(ω̃

�).
Step 2. Find the subset of the plane where the reference centroid is located. According to the results listed below, consider 

the corresponding problems listed on Fig. 2:
• if px ≤ 0.5cx and p y ≤ 0.5c y consider the problems 1, 2 and 8;
• if px > 0.5cx and p y ≤ 0.5c y consider the problems 2, 3 and 4;
• if px > 0.5cx and p y > 0.5c y consider the problems 4, 5 and 6;
• if px ≤ 0.5cx and p y > 0.5c y consider the problems 6, 7 and 8.

Step 3. Solve one quartic (14) and two cubic (16) equations of the considered problems.
Step 4. Eliminate every root that gives a result which is outside the domain defined in equations (8) and (12).
Step 5. Find the root that gives the closest orthogonal projection.
Step 6. If the dual problem was solved, transform the result back to the primal problem.

Note that the third step requires performing the transformations defined in §2.4 in order to apply the formula (14) and (16).
After finding the coordinates of the centroid xc(ω

�), formula (6) and (10) can be used to obtain the normal (nx, ny) or 
any other quantity to represent the reconstructed interface.

4. Discussion on existence and uniqueness

In article [1], the authors address a particular attention to uniqueness and existence of a solution. The method proposed 
in the present article solves the same minimization problem (3) as defined in [1]. As a consequence, the results about 
uniqueness and existence of [1] are also valid for the proposed method, that is, the solution of MoF interface reconstruction 
exists and is unique except for a set of reference centroids that have zero area. Thus, a particular attention must be paid to 
how multiple solutions are handled and how the solutions are eliminated in the fourth step of the proposed algorithm.

To the question about how to handle multiple solutions, the answer is implementation dependent. The proposed al-
gorithm consists in computing all the valid solution for every selected configurations and selects the solution that gives 
the closest distance to the reference centroid. In our implementation, if there are two solutions that give the same closest 
distance, only the first solution is kept. As regards the minimization, the choice between multiple solution depends on the 
initial condition of the minimization algorithm. Therefore, in both algorithms, the choice is in some ways arbitrary.

To the question about how to eliminate solutions that are outside their definition domain, a particular attention must 
be paid when the solutions are close to the border of their definition domain. It is possible due to the finite precision 
and numerical errors that a correct solution is eliminated because it lies out, but very close, to the border of its definition 
domain. A possible answer to this problem consists in giving a thickness to the border. That corresponds to accept the 
solutions that are outside their definition domain, but close to the border with a given epsilon.
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Fig. 5. MoF reconstruction of the static test case on a 20482 Cartesian grid.

Table 1
Time ratio minimization/analytic for the static test case on a 20482 Cartesian grid.

Min. 10−15 Min. 10−12 Min. 10−9 Min. 10−6

Ana. 2.59 2.23 1.87 1.44

5. Test cases

We have implemented the proposed algorithm in the open-source code Notus (http :/ /notus-cfd .org). We have tested this 
implementation on various cases from exact reconstruction to advected cases. We have compared the computational time 
with the standard minimization algorithm [1]. We consistently observe better performances for the analytic reconstruction, 
which span from 20% to 300% faster than the minimization method. This large range of performance results from the 
dependency of the method on a lot of parameters such as the tolerance value, the shape of the interface, the number of 
cells, and the number of fluids.

We have selected two test cases to provide a sample of the performance of this method. The first case is a static 
reconstruction on a shape that can be exactly reconstructed, i.e. the reference centroid belongs to the locus of the centroids. 
The second case is dynamic. It is closer to a practical case and will provide a better hint of the true performance than the 
static case.

In our implementation of the minimization algorithm, we use the line search algorithm [19] as recommended by [2]. 
The speed of the minimization algorithm depends on the Flood Algorithm used to reconstruct the interface from the normal 
and the volume fraction. In our implementation, we use the Flood Algorithm presented in [20] which is similar to the one 
presented in [1] but behaves better when two sections are very close to each other. The reader can refer to Appendix A for 
implementation details.

Remark. The minimization algorithm stops when the error reaches a prescribed tolerance value. Since the algorithm consists 
in bracketing the angle, the error is defined as the difference between the upper and lower bound of the bracketing. Note 
that this error should not be confused with the centroid defect. In other words, even if the centroid defect can not be zero, 
the bracketing error can always be as close as possible to zero, up to the machine error.

5.1. Static reconstruction

The static case consists in the reconstruction of many disks of radius 0.045 in a unit square domain [0, 1]2 such as 
represented on Fig. 5. The disks are discretized such that an exact reconstruction is possible; the circle is approximated by 
straight line segments in the cells intersected by the interface. We use a Cartesian grid composed of 20482 cells to ensure 
a substantial computational time.

Table 1 presents the time ratio between minimization and analytic reconstruction for tolerance values 10−15, 10−12, 
10−9 and 10−6. These tolerance values are based on the angle, as defined in the previous remark.

In our experiments, we have observed that the centroid defect |M1(ω
�) − M1(ω

�)| given by the analytic reconstruction 
is on the order of the machine precision (10−16). If we compare the computational time of the minimization process with 
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Fig. 6. MoF reconstruction of the dynamic test case on a 1282 Cartesian grid. The left picture represents the initial and the final state and the right picture 
represents the maximal deformation. Magnified zones emphasize the defects at the final state compared to the initial state represented by dashed lines.

Table 2
Time ratio minimization/{analytic & minimization} for the dynamic test case on a 1282 Cartesian grid.

Min. 10−15 Min. 10−12 Min. 10−9 Min. 10−6

Ana. & Min. 10−15 2.27 1.95 1.59 1.33
Ana. & Min. 10−12 2.38 2.04 1.67 1.39
Ana. & Min. 10−9 2.52 2.16 1.77 1.47
Ana. & Min. 10−6 2.67 2.29 1.87 1.56

a tolerance value that gives an equivalent precision for the centroid defect, we observe that the analytic reconstruction is 
about 160% faster. With a tolerance value that would be used for a physical simulation (about 10−6 ), we observe that the 
analytic reconstruction is at least 44% faster, but the centroid defect does not reach the machine error.

5.2. Dynamic reconstruction

In this numerical test we consider four disks, all composed of four materials, immersed in a reversible sheared flow. The 
domain is the unit square [0, 1]2, the radius of the circles is 0.15 and they are arranged in a cross form with a distance 
of 0.25 from the center of the domain as represented in Fig. 6. The velocity field is the following:

u(x, y, t) =
[−2 sin2(πx) sin(π y) cos(π y)

2 sin2(π y) sin(πx) cos(πx)

]
cos

(
π

t

2

)
(17)

The mesh is a Cartesian grid composed of 1282 cells. The total number of iteration is 4,000 and the time step is 5 × 10−4. 
We use the Lagrangian remap algorithm with a Runge–Kutta 2 scheme to advect the fluids as presented in [1].

In this numerical test, more than two fluids can be present in one cell. To reconstruct the interface, we use the serial 
dissection [4] where the analytic reconstruction is used for the first fluid and the minimization algorithm is used for the 
remaining fluids. When four fluids are involved simultaneously in a cell, we use the B-tree dissection [4] to generate more 
combinations. As a consequence, the minimization algorithm is always involved in the reconstruction. To compare the 
minimization to the analytic reconstruction, we compare the time to reconstruct the interface with only the minimization 
algorithm for various tolerance values to the time to reconstruct the interface with both algorithms involved and for various 
tolerance values.

Table 2 presents the time ratio between minimization and analytic & minimization reconstruction for tolerance values of 
10−15, 10−12, 10−9 and 10−6. Note that we only measure the time of reconstruction.

We observe that the time ratio is always greater than 1 which means that the analytic reconstruction combined to 
the minimization is always faster that minimization alone. In the worst case, when we compare the analytic reconstruction 
combined to the minimization with a tolerance value of 10−15 to the minimization alone with a tolerance value of 10−6, we 
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observe that the proposed method is 33% faster than the classic minimization with a better precision. If we want to have the 
same precision with the classic minimization (10−15), the time ratio becomes 2.67 for the benefit of the proposed method.

6. Conclusion

We have proposed an analytic MoF algorithm to reconstruct the interfaces on rectangular cells for two materials without 
minimization process. We have measured the CPU time of both the proposed algorithm and the minimization method on 
two test cases. The results show that the analytic reconstruction provides accurate results with a lower computational cost 
than the minimization method. When more than two materials are involved, the proposed algorithm can be applied only to 
the reconstruction of the first material, the remaining materials are reconstructed using the original minimization algorithm. 
Even in this case, we have shown that this algorithm is interesting in conjunction with the minimization algorithm.
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Appendix A. Flood algorithm for convex cells

Consider a convex polygon P composed of N vertices defined in counterclockwise order {p0, · · · , pN}. The Flood Algo-
rithm consists in finding a line segment � parametrized by its normal n and its distance to the origin ξ� such that the part 
of the polygon behind the line segment matches a prescribed volume V , the flooding direction being given. The Algorithm 1
presents the Flood Algorithm we have implemented. The Fig. 7 illustrates the algorithm.

Algorithm 1: (Flood Algorithm) compute the distance ξ� from the volume of fluid V and the flood direction n.

input : Convex polygon P = {p0, · · · , pN}, volume of fluid V , flood direction n
output: Distance ξ�

Find the point of the polygon with the minimal signed distance in direction n and call it p0.

l ← 1, r ← N;
|�| ← 0, |�next| ← 0;
ξ ← 0, ξnext ← 0;
V trapezoid ← 0;

for k ← 1 to N − 1 do
if ξr < ξl then

ξnext ← ξr ;
r ← r + 1;

else
ξnext ← ξl;
l ← l − 1;

end

|�next| ← ComputeSection(ξnext , n, P);
V trapezoid ← 0.5(ξnext − ξ)(|�next| + |�|);

if V tot + V trapezoid ≥ V then

α ← V − V tot

V trapezoid
;

β ←
√( |�|

|�next| + |�|
)2

+ α
|�next| − |�|
|�next| + |�| + |�|

|�next| + |�| ;

ξ� ← ξ + (ξnext − ξ)
α

β
;

break;
end

V tot ← V tot + V trapezoid;
� ← �next;
ξ ← ξnext;

end
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Fig. 7. Illustration of the Flood Algorithm on a convex polygon.
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