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Abstract This article provides amethodology to performdiscreteHelmholtz–Hodge decom-
position on three-dimensional polyhedral meshes using structure-preserving schemes: the
Compatible Discrete Operator schemes. We propose to extract the decomposition compo-
nents independently with one equation to solve per component or potential. The key of the
method is the choice of a discrete Hodge operator that makes a compromise between con-
vergence rate and computational cost. Numerical experiments are performed to evaluate the
convergence rate and the computational cost on various polyhedral meshes, in particular, on
the FVCA benchmark meshes. We also investigate some linear solver capabilities to solve
our equations. The main contribution of this paper is the application of the CDO schemes to
the Hodge decomposition and the required solvers.

Keywords Helmholtz–Hodge · Mimetic · Polyhedral mesh · Divergence-free · Curl-free

1 Introduction

Computational physics often generates a lot of data that need to be processed to reveal
features relevant to the phenomena studied. For instance, we can mention the detection of
vortex centers in a turbulent flow, or the detection of the point of maximal curvature of a
fingerprint. This can be achieved efficiently by theDiscrete Helmholtz–Hodge Decomposition
(DHHD). Helmholtz–Hodge decomposition consists in separating an initial vector field into
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an irrotational field, a solenoidal field and a harmonic field (1).

u = uθ + uψ + uh
= grad θ

︸ ︷︷ ︸

compression

+ curlψ
︸ ︷︷ ︸

rotation

+ uh
︸︷︷︸

harmonic

(1)

Moreover, irrotational and solenoidal parts are derived from potential fields. The extrema of
the rotation potentialψ are the location of vortex centers and the extrema of the compression
potential θ are the location of sources and sinks. These properties have been used in [1,2]
and [3] to perform the previously mentioned feature detections. The DHHD is not only a
tool to analyze data. It can also be used in computational fluid dynamics for solving the
Navier-Stokes equations, especially in the vector projection step [4]. The reader can refer to
the survey of Bhatia et al. [5] for more applications. The versatility of this tool interests us
to develop efficient methods to perform the decomposition.

Many authors such as Hyman and Shashkov [6] or Tong et al. [1] have emphasized the
necessity to use structure preserving schemes (or mimetic, or compatible schemes) to ensure
an exact discrete decomposition. That is, the irrotational term must be curl-free and the
solenoidal term must be divergence-free to the unit roundoff. These schemes are designed
to preserve some properties of the differential operators at the discrete level. For instance,
these schemes guarantee that the identities curl grad = 0 and div curl = 0 are preserved at
the discrete level. In this article, we choose to use the Compatible Discrete Operator (CDO)
schemes introduced byBonelle andErn [7]which belong to the family of structure-preserving
schemes. These schemes come from the seminal ideas of Bossavit [8]. The reader can also
refer to [9–11] for similar ideas.

While the DHHDhas been widely explored bymany authors, few have proposed amethod
to perform the DHHD on three-dimensional polyhedral meshes. For instance, Polthier and
Preuß [3], Guo et al. [12] or Bluck andWalker [13] designed a method to perform the DHHD
on triangular meshes. As shown in [14], the key to the problem is the choice of a suitable
discrete Hodge operator, or equivalently, a discrete inner-product. Most of the discrete Hodge
operators found in the literature are designed for tetrahedral or hexahedral meshes and those
designed for polyhedral meshes require generally a minimization process or an explicit
matrix inversion (e.g. [15]). The computational cost of these operators is the limiting factor
for applications on dense meshes. Following the idea of Bonelle and Ern [7], we chose the
Hodge operator designed by Codecasa et al. [16] which can be computed explicitly without
minimization or matrix inversion.

In this paper, we explore many ways to perform the DHHD with a set of four equations,
one per field of the decomposition (uθ , uψ , θ , or ψ). The novelty of this proposal consists in
the exploration of various algorithms to extract these fields on polyhedral meshes with the
CDO schemes and in the numerical study of the behaviors of these algorithms using various
linear solvers.

The remainder of this paper is organized as follows. In Sect. 2, we present the CDO
framework. In Sect. 3, we introduce the algorithms used to perform the DHHD. In Sect. 4,
numerical results on computational cost and convergence rate are presented. Finally, future
works are envisaged and conclusions are drawn in Sect. 5.

2 Compatible Discrete Operators

This section presents the CDO framework. The notations used in this article are widely based
on [7]. The reader can refer to this article for more information about CDO schemes.
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Fig. 1 Example of a cell-complex composed of prisms and a pyramid. Primal elements are emphasized in
blue and their dual elements in red (Color figure online)

2.1 Discrete Domain

The discrete domain is a polyhedral tessellation of a continuous domain � composed of
the elements M = {V, E, F, C}. V is the set of vertices, E is the set of edges, F is the
set of faces, and C is the set of cells. The numbers of elements of each kind are denoted
{#V, #E, #F, #C}. We denote by the small characters v, e, f or c the elements of V , E , F
or C . In the remainder, we will refer to this discrete domain by the words cell-complex or
primal mesh.

In addition to this cell-complex, we consider a barycentric dual mesh M̃ = {Ṽ , Ẽ, F̃, C̃}.
Each element of the initial (or primal) cell-complex is associated with a unique element of
the dual mesh. Namely, a primal vertex v is associated with a dual cell c̃(v), a primal edge
e is associated with a dual face f̃ (e), a primal face f is associated with a dual edge ẽ( f ),
and a primal cell c is associated with a dual vertex ṽ(c). Figure 1 presents a cell-complex
composed of three prisms and a pyramid.

Note that we write “dual mesh” and not “dual cell-complex”. To be a cell-complex, the
dual mesh must have all its elements homeomorphic to a closed k-ball. By construction, the
dual elements near the boundary of the domain are not closed. The closure of these elements
provides a way to impose boundary conditions. This will be discussed in Sect. 2.3.

The dual elements can be built using a collection of subsets of the primal mesh. Consider
{x0, . . . , xk} a set of k + 1 vertices with k ∈ �0, 3�. We denote s(x0, . . . , xk) the interior of
the simplex of dimension k generated by these vertices. Now consider ca the barycenter of
the primal element a. The dual elements are defined by the following formulas:

∀c ∈ C ṽ(c) := cc (2a)

∀ f ∈ F ẽ( f ) :=
⋃

c∈C f

s(cc, c f ) (2b)

∀e ∈ E f̃ (e) :=
⋃

f ∈Fe

⋃

c∈C f

s(cc, c f , ce) (2c)
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∀v ∈ V c̃(v) :=
⋃

e∈Ev

⋃

f ∈Fe

⋃

c∈C f

s(cc, c f , ce, cv) (2d)

Where Fe denotes the set of faces that contain the edge e in their boundary.

2.2 Degrees of Freedom

The degrees of freedom (DoF) are defined by the de Rham map RA : S → A where S
denotes a suitable space andA denotes the resultant DoF space or cochain space. We denote
by {V, E,F, C} the set of DoF associated with the elements {V, E, F, C}. Consider p as a
scalar field and u as a vector field. The DoF are defined by the following formulas:

∀v ∈ V (RV(p))v :=p(v), ∀c ∈ C (RC(p))c:=
∫

c
p,

∀e ∈ E (RE(u))e:=
∫

e
u · te, ∀ f ∈ F (RF (u)) f :=

∫

f
u · n f

(3)

Note that these formulas involve the tangent vectors te of edges and the normal vectors n f of
faces. Thatmeans that the geometric elements need to be (arbitrary) oriented. This orientation
is represented in Fig. 1 by little arrows.

To understand what these DoF represent, we can use the metaphor of Tonti [17]: the mesh
elements can be seen as a set of sensors that are sensitive to specific physical quantities. For
instance, the DoF on the edges can be seen as sensors of circulations along lines and those
of the faces can be seen as sensors of fluxes across surfaces. In general, scalar fields can be
discretized (or measured) on points or cells and vector fields can be discretized on edges or
faces. The de Rhammaps (3) measure the physical quantities with the right sensor, that is, the
right geometric element. This right geometric element is given by the nature of the physical
quantity. The reader can refer to the article of Tonti [17] for a classification of the physical
variables and their relation to the geometric elements.

We also emphasize that the DoF are not defined on some points of the geometric elements
or approached by a polynomial approximation like in the finite volumes method or the finite
elements method. To distinguish the nature of the DoF of the CDO schemes from those of
the other methods, we choose to use the word cochain, borrowed from the vocabulary of
algebraic topology, instead of DoF.

These definitions can be naturally extended to dual elements to build the dual cochain
spaces {Ṽ, Ẽ, F̃, C̃}.
2.3 Discrete Operators

The CDO schemes define discrete differential operators as applications between cochain
spaces, such as:

GRAD : V → E, CURL : E → F, DIV : F → C (4)

The Stokes formulas allow these operators to be expressed in terms of a matrix composed
only of the elements {−1, 0, 1}. For instance, the Stokes formula applied to the divergence
on a cell c for any vector field φ gives

∫

c
divφ =

∑

f ∈F

ı f,c

∫

f
φ · n f (5)
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where ı f,c is the incidence matrix between faces and cells. It is given by

ı f,c =

⎧

⎪
⎨

⎪
⎩

0 if f does not belong to ∂c

1 if n f points towards n

−1 otherwise

(6)

where n denotes the outward normal of the cell c, n f the arbitrary oriented normal of face f
and ∂c the boundary of the cell c. Rewrite (5) using the de Rham map, we define the discrete
divergence operator as

(DIVRF (φ))c:=(RC(divφ))c =
∑

f ∈F

ı f,c(RF (φ)) f (7)

Similarly, the three discrete differential operators of the equation (4) can be expressed with
incidence matrices. Consider p ∈ V , u ∈ E and ψ ∈ F , the discrete differentials operators
are defined by:

∀e ∈ E (GRAD p)e =
∑

v∈V

ıv,epv, ∀ f ∈ F (CURL u) f =
∑

e∈E

ıe, f ue,

∀c ∈ C (DIVψ)c =
∑

f ∈F

ı f,cψ f (8)

The reader can check that, by construction, we have the following identities:

∀p ∈ V CURL ·GRAD p = 0 ∀u ∈ E DIV ·CURL u = 0 (9)

One possibility to define discrete differential operators on the dual mesh is to introduce the
discrete duality product. Consider two cochain spaces A and B̃, the discrete duality product
between u ∈ A and φ ∈ B̃ is given by

�u,φ�AB̃ =
∑

a∈A

uaφb̃(a)
(10)

Where ua denotes the value of cochain u on the primal element a ∈ A and φb̃(a)
denotes the

value of cochain φ on the dual element b̃(a) ∈ B̃.
Thus, the discrete differential operators are defined by adjunction

∀(p,φ) ∈ V × F̃
�
p,˜DIVφ

�

VC̃
:= − �GRAD p,φ�EF̃ ,

∀(ψ,u) ∈ E × Ẽ
�
ψ, ˜CURL u

�

EF̃
:= �CURLψ,u�FẼ ,

∀(φ, ρ) ∈ F × C̃
�
φ, ˜GRAD ρ

�

FẼ
:= − �DIVφ, ρ�VC̃

(11)

To build second order operators such as div grad or curl curl, we need operators that link
primal cochains to dual cochains. This is the purpose of the discrete Hodge operator. In a
three-dimensional cell-complex, we have four discrete Hodge operators:

HVC̃ : V → C̃ HEF̃ : E → F̃
HFẼ : F → Ẽ HCṼ : C → Ṽ

(12)

The design of these operators is the main issue of CDO schemes. Namely, these operators
govern the convergence rate and the computation cost of the method. In short, we require
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Fig. 2 Discrete de Rham complex

(a) (b) (c)

Fig. 3 Closure of dual discrete operators. a v̄, b ē, c f̄

these operators to be symmetric definite positive. The discrete Hodge operators we use in
our simulations are presented in Sect. 4.

All the discrete operators can be summed using the discrete de Rham complex represented
in Fig. 2.

By construction, the dual mesh is not closed on the boundary. Thus, the dual operators
require boundary conditions to be computed. For instance, consider a dual cell c̃(v) near the
boundary. The dual divergence operator ˜DIV can be closed by addition of an extra flux φ f̄

on the closing face f̄ represented in Fig. 3c:

(˜DIVφ)c̃ =
∑

f̃ ∈F̃

ι f̃ ,ṽ
φ f̃ + φ f̄ (13)

The same way, an extra vertex v̄ and an extra edge ē (Fig. 3a, b) are used to impose boundary

conditions for the operators ˜GRAD and ˜CURL.

3 Discrete Decomposition Strategies

In this section, we give a description of the way the DHHD can be carried out. The starting
point comes from the fact that the de Rham operator can discretize any vector field in two
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ways. The vector fields can be discretized on edges and considered as circulations, or they
can be discretized on faces and considered as fluxes. These two discretizations lead to two
families of DHHD: edge-based and face-based that we will present in the following sections.
For the sake of clarity, we add, as an exponent, the space to which the cochains belong.

3.1 Edge-Based DHHD

The edge-based decomposition considers the initial discrete vector field uE as a set of circu-
lations. The degrees of freedom are located on the edges E . The following equation denotes
the DHHD for circulations:

uE = GRAD θV + (HEF̃ )-1 · ˜CURL ·HFẼ ψF + uhE

= uθ
E + uψ

E + uhE
(14)

Note that we can also consider the vector potential as a cochain on the dual mesh, that is

ψ Ẽ = HFẼ ψF .
The two potentials and their derivatives can be extracted independently using the following

equations:

(HVC̃)-1˜DIVHEF̃ GRAD θV = (HVC̃)-1˜DIVHEF̃ uE (15)

CURL (HEF̃ )-1 ˜CURLHFẼ ψF = CURL uE (16)

GRAD (HVC̃)-1˜DIVHEF̃ u
θE = GRAD (HVC̃)-1˜DIVHEF̃ uE (17)

(HEF̃ )-1 ˜CURLHFẼ CURL u
ψE = (HEF̃ )-1 ˜CURLHFẼ CURL uE (18)

The harmonic field uhE is deduced by subtraction:

uhE = uE − uθ
E − uψ

E (19)

Equations (17) and (18) were proposed by Angot et al. [4] to perform the DHHD. They
introduced these equations with an extra penalization term εId, where ε is a small real
number. In a following section, Sect. 4.2, we will discuss how to get rid of it by using suitable
linear solvers.

Concerning the boundary conditions, we distinguish two cases. If the first operator acting
on the unknown discrete field is a primal operator, both primal and dual boundary conditions
are available. For instance, in equation (15), we can impose the value of θV on the primal

boundary or the flux generated by the gradient HEF̃ ·GRAD θV on the closure of the dual
mesh, as in Fig. 3c. While, if the first operator acting on the unknown discrete field is a dual
operator, only dual boundary conditions are available. Table 1 summarizes the boundary
conditions available for equations (15) to (18).

Note that the decomposition is unique up to the given boundary conditions (e.g. see [5]).
Furthermore, some boundary conditions are not sufficient to give the uniqueness of the
potentials. For instance, the discrete scalar potential θV , obtained with equation (15), is
unique up to a constant when using dual or periodic boundary conditions while it is unique
when primal boundary conditions are applied. The other operators (16), (17), and (18) have
a null space of large dimension, we will see in Sect. 4.2 how to find a solution which does
not belong to the kernel.
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Table 1 Boundary conditions
available for the edge-based
equations written in terms of
continuous variables and their
locations

Equation Primal Location Dual Location

θV θ Primal vertices grad θ · n Dual faces

ψF n/a ψ · t Dual edges

u
θE n/a uθ · n Dual faces

u
ψE uψ · t Primal edges curl uψ · t Dual edges

Table 2 Boundary conditions
available for the face-based
equations written in terms of
continuous variables and their
location

Equation Primal Location Dual Location

θC n/a θ Dual vertices

ψE ψ · t Primal edges curlψ · t Dual edges

uθ
F uθ · n Primal faces div uθ Dual vertices

uψ
F n/a uψ · t Dual edges

3.2 Face-Based DHHD

The face-based decomposition considers the initial discrete vector field uF as a set of fluxes.
The degrees of freedom are located on the faces F . The following equation denotes the
DHHD for fluxes:

uF = (HFẼ )-1 · ˜GRAD ·HCṼ θC + CURLψE + uhF

= uθ
F + uψ

F + uhF
(20)

The two potentials and their derivatives can be extracted independently using the following
equations:

DIV (HFẼ )-1 ˜GRADHCṼ θC = DIV uF (21)

(HEF̃ )-1 ˜CURLHFẼ CURLψE = (HEF̃ )-1 ˜CURLHFẼ uF (22)

(HFẼ )-1 ˜GRADHCṼ DIV uθ
F = (HFẼ )-1 ˜GRADHCṼ DIV uF (23)

CURL (HEF̃ )-1 ˜CURLHFẼ uψ
F = CURL (HEF̃ )-1 ˜CURLHFẼ uF (24)

The harmonic field uhF is deduced by subtraction:

uhF = uF − uθ
F − uψ

F (25)

Table 2 summarizes the boundary conditions available for equations (21) to (24).

4 Numerical Results

We start this section by defining the various discrete norms we will use to evaluate the errors
and we explain the choice of the iterative methods to solve the algebraic systems issued from
the DHHD. Finally, we present some numerical results to validate our approach.
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(a) (b) (c)

Fig. 4 Subvolumes associated with mesh elements. a pv,c , b pe,c , c p f,c

4.1 Discrete Norms

To measure errors at the discrete level, a discrete norm must be designed. We could use the
discrete duality product defined on equation (10) with a discrete Hodge operator to create an
inner product and use this inner product to build a discrete norm. For example:

norm(u) =
√�

u,HEF̃ u
�

EF̃
(26)

However, this norm depends on a discrete Hodge operator. Instead, we chose a Hodge-
independent discrete norm based on a generic partition of the whole domain. The following
equations define the discrete p-norms for all the cochain spaces:

∀θV ∈ V |||θV |||p,V :=
⎛

⎝

∑

c∈C

∑

v∈Vc

|pv,c||θV
c |p

⎞

⎠

1/p

(27)

∀uE ∈ E |||uE |||p,E :=
⎛

⎝

∑

c∈C

∑

e∈Ec

|pe,c|
( |uE

e |
|e|

)p
⎞

⎠

1/p

(28)

∀ψF ∈ F |||ψF |||p,F :=
⎛

⎝

∑

c∈C

∑

f ∈Fc

|p f,c|
( |ψF

f |
| f |

)p
⎞

⎠

1/p

(29)

∀ρC ∈ C |||ρC|||p,C :=
(

∑

c∈C

|c|
( |ρC|

|c|
)p

)1/p

(30)

In these equations, the errors are computed and summed cell by cell. We use the notation Vc

to denote the set of all the vertices which belong to a cell c. This notation is also used for the
set of edges and faces which belong to a cell c : Ec and Fc. Each geometric element of the
cell is associated to a subvolume of the cell to which it belongs. These subvolumes are built
to ensure a partition of unity of the cell. They are denoted p with the associated geometric
element and the cell where it belongs to in subscript. For instance, the subvolume associated
to an edge e of a cell c is denoted pe,c. Some examples of subvolumes are represented in
Fig. 4.

Consider a field φ and a cochain φA ∈ A which approaches φ at the discrete level. The
cochain spaceA can be any of the spaces {V, E,F, C}. The discrete L2 error on φ is defined
by:
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ErA(φ):=|||φA − RA(φ)|||2,A (31)

Consider a sequence of meshes of increasing density indexed with integers. The convergence
rate r between two meshes i − 1 and i is given by

r:= − 3 log

(

EriA
Eri−1

A

)

/ log

(

#Ai

#Ai−1

)

(32)

where EriA is the discrete error relative tomesh i and #Ai is the number of geometric elements
of type A in mesh i . Note that coefficient 3 depends on the dimension of the cell-complex.
For instance, in a planar case, the coefficient will be 2. The reader can refer to [18] for this
definition.

4.2 Linear Solvers

Wehave seen inSect. 3 above thatmost of the components of theDHHDcanbe extracted using
singular linear systems. Without loss of generality, consider the extraction of the solenoidal

field. This problem consists in finding a cochain uψ in Im((HEF̃ )-1 ˜CURLHFẼ ) ⊂ E with
respect to the following equation:

(HEF̃ )-1 ˜CURLHFẼ CURL uψ
E = (HEF̃ )-1 ˜CURLHFẼ CURL uE (33)

We distinguish at least three ways to resolve this problem. The first consists in solving a
constrained problem involving a Lagrange multiplier. The second consists in approaching
the solution using regularization, such as the VPP an RPP methods proposed by Angot
et al. [19]. The third way consists in using well designed discrete operators coupled with an
iterative linear solver. This is the way we choose to perform the DHHD.

Equation (33) can be rewritten Ax = b, where:

A = (HEF̃ )-1 ˜CURLHFẼ CURL

b = (HEF̃ )-1 ˜CURLHFẼ CURL uE

x = uψ
E

(34)

Notice that Im(A) ⊂ Im((HEF̃ )-1 ˜CURLHFẼ ) and b ∈ Im((HEF̃ )-1 ˜CURLHFẼ ). If we

make an initial guess x that belongs to Im((HEF̃ )-1 ˜CURLHFẼ ) and choose an iterative
method that performs only linear combinations or matrix-vector products of these elements,

the solution will remain in Im((HEF̃ )-1 ˜CURLHFẼ ). For instance, we can consider Krylov-
based linear solvers. The matrix involved in our linear systems are non-symmetric. Thus, we
need to use suitable Krylov-based linear solvers. In this paper, we focus on three of them:
BiCGStab2 [20], BiCGStab(l) [21] and (Full GMRES) FGMRES [22].

However, HEF̃ and HFẼ are not diagonal on polyhedral meshes. Thus, their inverses are
not sparse. We have found to ways to manage this problem depending on the position of
the inverse of the Hodge operator in the operator A. If the inverse is at the extremity of
the operator—such as in equations (18), (22) and (23)—we use the preconditioning trick.
Otherwise, if the inverse is in the middle of the operator—such as in equations (16), (21) and
(24)—we use the saddle-point trick.

The preconditioning trick consists in considering the Hodge operator as a left pre-

conditioner M of the linear system A′x = b′. Where A′ = ˜CURLHFẼ CURL and

b′ = ˜CURLHFẼ CURL uE . That is M−1A′x = M−1b′, with M = HEF̃ . Note that we
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Fig. 5 Sample of the cartesian
mesh sequence

X
Y

Z

cannot simply remove (HEF̃ )-1 by multiplying byHEF̃ . If we do so, the approached solution

x will not remain in Im((HEF̃ )-1 ˜CURLHFẼ ) since Im(A′) �⊂ Im((HEF̃ )-1 ˜CURLHFẼ ).
However, for evident performance reasons, we refuse to explicitly compute an inverse matrix
and we refuse to solve a linear system for each iteration of the Krylov-based linear system.
Fortunately, the Hodge operator is a sparse symmetric definite positive matrix. Thus, we
can compute a permuted Cholesky decomposition M = PLL�P� that remains sparse. This
decomposition can be performed at the start of the iterative method. Then, at every itera-
tion, we have just to perform a fast bottom-up operation to apply preconditioning where it is
required.

The saddle-point trick involves less computation than the preconditioning trick but
involves a bigger linear system. For instance, the extraction of the scalar potential can be
equivalently rewritten in the following saddle-point problem: find (θ Ṽ ,uθ

F ) ∈ Ṽ × F such
that

{

HFẼ ·uθ
F − ˜GRAD θ Ṽ = 0Ẽ

DIV uθ
F =DIV uF (35)

Note that this linear system allows the extraction of the irrotational component too.
Another way to explore this is the implementation of the algebraic multigrid proposed by

Bell [23].

4.3 Numerical Experiments

To illustrate the efficiency of our approaches, we performed several numerical experiments
that we split into two families. First, we attempted to find the best linear solver to compute the
DHHD. This step was carried out on Cartesian meshes with periodic boundary conditions.
Then, we used this solver to compute the DHHD on polyhedral meshes with boundary
conditions different than periodic. Each of the numerical results will be computed on some
mesh sequences of increasing density.

4.3.1 Cartesian Meshes

The Table 3 depicts the mesh sequence used for our tests. These meshes comes from tessel-
lation of the hexahedron [−1, 1] × [−2, 2] × [−3, 3].

The following periodic potentials are used for our tests:

ψ = − 1

π

⎛

⎝

sin3(πy) cos3(π z)
sin3(π z) cos3(πx)

sin3(πx) cos3(πy)

⎞

⎠ θ = − 1

π
cos3(πx) cos3(πy) cos3(π z) (36)
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Table 3 Cartesian mesh
sequence

Mesh #V #E #F #C

cart 8 512 1,344 1,176 343

cart 16 4,096 11,520 10,800 3,375

cart 32 32,768 95,232 92,256 29,791

cart 64 262,144 774,144 762,048 250,047

cart 128 2,097,152 6,242,304 6,193,536 2,048,383

Fig. 6 Comparison of the times elapsed between FGMRES and BiCGStab2 for the extraction of the various
components for the edge-based decomposition

We also introduce the following harmonic field:

uh = (

1 1 1
)ᵀ

(37)

Thus, the initial vector field writes:

u = curlψ + grad θ + uh (38)

This field is discretized onto the edges and faces using the de Rham maps:

uE = RE(u) uF = RF (u) (39)

In practice, we use high order quadrature formulas to approximate the de Rham map near
the unit roundoff.

For the Cartesian meshes we use the following diagonal Hodge operators:

∀(a, a′) ∈ A2 (HAB̃)a,a′ =
⎧

⎨

⎩

|b̃(a)|
|a| ifa = a’

0 otherwise
(40)

where A denotes any cochain space and B̃ its dual. The measure of a vertex is considered as
equal to 1 (Fig. 5).

For the tests, we set the maximum number of iterations to 128 for both FGMRES and
BiCGStab2. The time taken to extract the components of the DHHD are reported in the
Fig. 6. Note that BiCGStab2 is about 5 times faster than FGMRES. Some issues have been
experienced with BiCGStab2. The solver becomes unstable once the minimal residual is
reached. We had to modify the solver to select the solution with the minimum residual.
This behavior is not encountered for the FGMRES. However, the dimension of the Krylov
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Fig. 7 Comparison between the number of iterations used by FGMRES and BiCGStab2 for the extraction of
the various components for the edge-based decomposition

Table 4 Discrete errors and convergence rates for the Cartesian mesh sequence for the edge-based decom-
position

Mesh ErV (θ) r ErF (ψ) r ErE (uθ ) r

cart 8 3.5 × 10−1 2.3 × 10−1 1.1 × 100

cart 16 7.5 × 10−2 2.3 1.2 × 10−1 0.9 4.4 × 10−1 1.4

cart 32 1.1 × 10−2 2.7 2.8 × 10−2 2.1 9.9 × 10−2 2.2

cart 64 2.5 × 10−3 2.2 6.9 × 10−3 2.0 2.4 × 10−2 2.1

cart 128 5.9 × 10−4 2.1 1.7 × 10−3 2.0 5.8 × 10−3 2.0

basis for the FGMRES solver has to be set large enough to not produce a restart, since any
restart causes the divergence of the solver. We also recall that FGMRES has a memory cost
proportional to the number of iterations, which means that it has a memory cost much larger
than BiCGStab2. Concerning the BiCGStab(l) solver, it provides results similar to those of
BiCGStab2 for l=2. With l=4, we observe that one iteration of BiCGStab(4) is equivalent to
two iterations of BiCGStab(2) with no performance gain.

The number of iterations for both solvers are reported in Fig. 7. Note that the extraction of
the scalar potential θV requires as many iterations as the other fields. This result is counter-
intuitive because of the system size. The other systems seem better-conditioned than the
extraction of θV , but the memory cost is about 3 times greater (see Table 3 for the number of
degrees of freedom). This behavior for the system conditioning has already been observed
in [24] and [19]. The maximum number of iterations is reached for uθ

E with 112 iterators
using FGMRES and for θV with 56 iterations using BiCGStab2.

As expected, Table 4 shows a convergence rate of 2. Note that the errors on uψ are not
represented since they are the same as the errors on uθ up to the unit roundoff.

The same parameters as the edge-based decomposition are used for the face-based decom-
position. We only have to adjust the maximum number of iterations to 150. We found similar
results as those obtained with edge-based decomposition for time (Fig. 8) andi for the number
of iterations (Fig. 9). The maximum number of iterations is reached for uψ

F with 135 itera-
tions using the FGMRES solver and also for uψ

F a with 61 iterations using BiCGStab2. As
well as edge-based schemes, a convergence rate of 2 is observed for these schemes (Table 9).
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Fig. 8 Comparison of the elapsed times between FGMRES and BiCGStab2 for the extraction of the various
components for the face-based decomposition

Fig. 9 Comparison between the number of iterations used by FGMRES and BiCGStab2 for the extraction of
the various components for the face-based decomposition

Table 5 Discrete errors and convergence rates for the Cartesian mesh sequence for the face-based decompo-
sition

Mesh ErE (ψ) r ErF (uθ ) r ErC(θ) r

cart 8 4.7 × 10−2 2.1 × 10−1 4.5 × 10−2

cart 16 1.6 × 10−2 1.5 1.1 × 10−1 0.8 3.4 × 10−2 0.4

cart 32 2.9 × 10−3 2.4 2.9 × 10−2 2.0 9.5 × 10−3 1.8

cart 64 6.7 × 10−4 2.1 7.1 × 10−3 2.0 2.4 × 10−3 2.0

cart 128 1.6 × 10−4 2.0 1.8 × 10−3 2.0 5.9 × 10−4 2.0

For both edge-based and face-based decompositions, the errors on the harmonic terms
uhE and uhF are observed being equal to the unit roundoff. The properties of extracted fields
(zero curl and divergence) are also verified to the unit roundoff.

Figure 10 summarizes the errors for both edge-based and face-based methods.
For the sake of completeness, we provide the gain offered by preconditioners for the

extraction of the discrete scalar potentials in Fig. 11. We can see that ILU0 decreases at
least by a factor of 3 the number of iterations of the BiCGStab2 solver in comparison with
BiCGStab2 without preconditioner.
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Fig. 10 Numerical errors on
extracted components. Plain lines
denote errors on edge-based
method and dashed lines denote
errors on face-based method

Fig. 11 Comparison between the
number of iterations for various
preconditioners using BiCGStab2

This first series of numerical experiments confirms that the numerical schemes provide
correct results. We have seen that BiCGStab2 is efficient to solve our equations. We will use
this numerical solver in the remainder to present the DHHD on polyhedral meshes.

4.3.2 Polyhedral Meshes

For the polyhedral meshes, we chose the discrete Hodge operators designed by [16] for the
Discrete Geometry Approach (DGA) schemes. These operators allow an explicit reconstruc-
tion of gradients and fluxes without minimization or explicit matrix inversion. According
to [7], these operators require some regularities of the primal mesh. For instance, the primal

faces must be planar. Since these operators are only designed for gradients and fluxes (HEF̃

and HFẼ ), we keep the diagonal Hodge operators for HVC̃ and HCṼ (Table 5).
To evaluate our method on polyhedral meshes, we use the meshes provided by the FVCA

benchmark [25]. For the sake of clarity, we present only two of the mesh sequences (Figs. 12,
13). These mesh sequences summarizes the two convergence behaviors using DGA Hodge
operators. The characteristics of the mesh sequences are provided in Tables 6 and 7.

Since these polyhedral meshes are not periodic, we use the discrete fields (36) introduced
for the Cartesian mesh sequence without the constant field (37). We also need boundary
conditions.We recall that the components of theDHHDdepend on these boundary conditions.
Unsuitable boundary conditions lead to a different decomposition (e.g. see [5]). To retrieve
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Fig. 12 BLS 10

Fig. 13 Checkerboard 4

Table 6 Prism mesh sequence Mesh #V #E #F #C

bls 10 1,331 4,730 5,400 2,000

bls 20 9,261 34,860 41,600 16,000

bls 30 29,791 114,390 138,600 54,000

bls 40 68,921 267,320 326,400 128,000

Table 7 Checkerboard mesh
sequence

Mesh #V #E #F #C

chkb 4 625 1,536 1,200 288

chkb 8 4,417 11,520 9,408 2,304

chkb 16 33,025 89,088 74,496 18,432

chkb 32 254,977 700,416 592,896 147,456

our analytical components, we need to impose the exact solution on the boundary using
primal or dual boundary conditions.

In equations (16), (21) and (24), we observe that the inverse of a DGA Hodge operator
is required. To avoid explicit matrix inversion, we propose to solve equation (16) using a
saddle-point problem. Considering only the dual vector potential ψ Ẽ and introducing uψ

E

= (HEF̃ )-1 ·ψ Ẽ , we rewrite equation (16) to obtain the following saddle-point problem: find
(uψ

E ,ψ Ẽ) ∈ E × Ẽ such that
{

−HEF̃ ·uψ
E + ˜CURLψ Ẽ = 0F̃

CURL uψ
E =CURL uE (41)

This problem allows the vector potential and the solenoidal component to be computed at
the same time. We impose dual boundary conditions on ψ Ẽ to obtain the results presented
in Fig. 14. Table 8 shows that we obtain a first order of convergence for the vector potential
ψ Ẽ . However, the solenoidal component uψ

E presents two convergence behaviors depending
on the mesh regularity. We also find two different convergence behaviors for the irrotational
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Fig. 14 Error measurements for the polyhedral mesh sequences for the edge-based DHHD. ◦ denotes the
checkerboard and × denotes the prism mesh

Table 8 Discrete errors and convergence rates for the polyhedral mesh sequences for the edge-based decom-
position

Mesh ErV (θ) r ErẼ (ψ) r ErE (uθ ) r ErE (uψ ) r

bls 10 9.8 × 10−5 1.1 × 10−1 7.8 × 10−4 6.9 × 10−3

bls 20 2.9 × 10−5 1.9 4.8 × 10−2 1.2 2.9 × 10−4 1.5 2.3 × 10−3 1.7

bls 30 1.4 × 10−5 1.9 3.1 × 10−2 1.1 1.5 × 10−4 1.7 1.1 × 10−3 1.8

bls 40 8.1 × 10−6 1.9 2.5 × 10−2 0.8 9.0 × 10−5 1.8 6.5 × 10−4 1.9

chkb 4 8.3 × 10−4 2.1 × 10−2 6.0 × 10−3 2.1 × 10−2

chkb 8 2.1 × 10−4 2.1 1.3 × 10−2 0.7 3.3 × 10−3 0.9 1.3 × 10−2 0.7

chkb 16 5.6 × 10−5 2.0 6.8 × 10−3 1.0 1.7 × 10−3 0.9 6.8 × 10−3 0.9

chkb 32 1.4 × 10−5 2.0 3.4 × 10−3 1.0 8.9 × 10−4 1.0 3.4 × 10−3 1.0

component uθ
E while the scalar potential θV reaches the second order of convergence. This

behavior is in line with the results found by [7].
For the face-based schemes, we also need to solve a saddle-point problem to extract

the scalar potential θ Ṽ . By introducing the irrotational component uθ
F = (HFẼ )-1 ·θ Ṽ ,

equation (21) can be transformed in the following saddle-point problem: find (θ Ṽ ,uθ
F ) ∈

Ṽ × F such that
{

HFẼ ·uθ
F − ˜GRAD θ Ṽ = 0Ẽ

DIV uθ
F =DIV uF (42)

We endow this system with Dirichlet boundary conditions. The discrete errors and conver-
gence rates for the face-based DHHD are presented in Fig. 15 and Table 9.
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Fig. 15 Error measurements for the polyhedral mesh sequences for face-based DHHD. ◦ denotes the checker-
board and × denotes the prism mesh

Table 9 Discrete errors and convergence rates for the polyhedral mesh sequences for the face-based decom-
position

Mesh ErṼ (θ) r ErE (ψ) r ErF (uθ ) r ErF (uψ ) r

bls 10 4.3 × 10−4 2.1 × 10−4 6.3 × 10−3 3.3 × 10−3

bls 20 1.2 × 10−4 1.8 5.6 × 10−5 2.0 1.9 × 10−3 1.8 1.2 × 10−3 1.5

bls 30 5.6 × 10−5 1.9 2.5 × 10−5 2.0 9.0 × 10−4 1.8 5.7 × 10−4 1.8

bls 40 3.8 × 10−5 1.4 1.4 × 10−5 2.0 5.4 × 10−4 1.8 3.3 × 10−4 1.9

chkb 4 2.4 × 10−3 6.3 × 10−3 3.6 × 10−2 1.8 × 10−2

chkb 8 3.0 × 10−4 2.9 1.9 × 10−3 1.9 1.4 × 10−2 1.3 1.0 × 10−2 0.8

chkb 16 9.9 × 10−5 1.6 9.0 × 10−4 2.2 5.4 × 10−3 1.4 4.7 × 10−3 1.1

chkb 32 2.9 × 10−5 1.8 5.4 × 10−4 2.0 2.4 × 10−3 1.1 2.3 × 10−3 1.1

We measure a second order of convergence for all the vector components and potentials
on the prism mesh sequence. A second order of convergence is also found for the potentials
on the checkerboard mesh sequence but only a first order is found on the vector components.

During our numerical experiments, we observe that the vector potential is harder to extract
than the other components. The equations and methods to extract ψ are extremely sensitive
to boundary conditions and numerical perturbations. Great caution must be taken in the
implementation of the CDO schemes and solvers to avoid disturbing this extraction.

We use BiCGStab2 to solve our equations. The number of iterations required for this
solver are close to those of the Cartesian mesh sequence (< 100) to reach the same residual.
However, the FGMRES solver is unusable on polyhedral meshes. Our numerical experiments
have shown that we cannot converge in a reasonable number of iterations with this solver.
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5 Conclusion

We propose a methodology to perform the discrete Helmholtz–Hodge decomposition on
polyhedralmeshes using numerical schemes that preserve the properties of the decomposition
at the discrete level, namely curl uθ = 0 and div uψ = 0. We have chosen the Compatible
Discrete Operator schemes designed by Bonelle and Ern [7] to ensure these properties. These
schemes lead to two kinds of DHHD, edge-based and face-based, depending on the discrete
representation of the discrete vector field.We can identify four components (two vector fields
and two potentials) plus a harmonic field in each kind of DHHD.We propose four algorithms
to extract these components independently. Most of these algorithms lead to singular linear
systems, but we have shown that we can treat them as regular linear systems using Krylov-
based linear solvers to get the expected solution.

We performed a two-step numerical validation. First, we performed validations on Carte-
sian meshes with periodic boundary conditions to check that our algorithms can effectively
extract the various components of the DHHD and to find the most suitable linear solver.
Our numerical experiments show that the BiCGStab2 is a good linear solver, better than the
FGMRES in terms of time and memory cost. Then, we use this linear solver to perform the
DHHD on polyhedral meshes with boundary conditions other than periodic. This second step
involved a choice of discrete Hodge operators required by the CDO schemes. Since we focus
on performance, we chose the discrete Hodge operators designed by Codecasa et al. [16],
given by an explicit formula without minimization or explicit matrix inversion. For many
reasons intrinsic to these operators, we only reached a first order of convergence for some
components of the decomposition. However, for most of the components, we were able to
reach the second order of convergence whatever the mesh, as long as the primal faces were
planar. In both validation steps, we checked that the properties of the DHHD are verified to
the unit roundoff.

Future investigations to improve the methods may focus on finding other Hodge operators
to reach an optimal convergence rate for all the components. To improve the performance
in terms of computational time, the implementation of the algebraic multigrid of Bell [23]
seems to be unavoidable.

Acknowledgments We would like to thank Jérôme Bonelle and Bruno Audebert from EDF and Marc
Gerritsma from Delft University of Technology for meaningful discussions on the DHHD and discrete oper-
ators.

References

1. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. In:
ACM SIGGRAPH 2003 Papers on—SIGGRAPH ’03, vol. 1, p. 445. ACM Press, New York, NY, USA
(2003)

2. Wiebel, A., Scheuermann, G., Garth, C.: Feature detection in vector fields using the Helmholtz–Hodge
decomposition. Master’s thesis, University of Kaiserslautern (2004)

3. Polthier, K., Preuß, E.: Identifying vector field singularities using a discrete Hodge decomposition. Work
5, 1–22 (2002)

4. Angot, P., Caltagirone, J.P., Fabrie, P.: A fast vector penalty-projection method for incompressible non-
homogeneous or multiphase Navier-Stokes problems. Appl. Math. Lett. 25(11), 1681 (2012)

5. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.T.: The Helmholtz–Hodge decomposition—a survey.
IEEE Trans. Vis. Comput. Graph. 99, 1 (2012, preprint)

6. Hyman, J.M., Shashkov, M.: The orthogonal decomposition theorems for mimetic finite difference meth-
ods. SIAM J. Numer. Anal. 36, 788–818 (1999)

123



J Sci Comput (2015) 65:34–53 53

7. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral
meshes. ESAIM: Mathematical Modelling and Numerical Analysis (2013)

8. Bossavit, A.: Computational electromagnetism and geometry: building a finite-dimensional ‘Maxwell’s
house’. (1): Network equations. Jpn. Soc. Appl. Electromagn. Mech. 7(2), 150–159 (1999)

9. Hyman, J.M., Shashkov, M.: Adjoint operators for the natural discretizations of the divergence, gradient
and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)

10. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically
rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

11. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–
1227 (2014)

12. Guo, Q., Mandal, M.K., Li, M.: Efficient Hodge–Helmholtz decomposition of motion fields. Pattern
Recogn. Lett. 26(4), 493 (2005)

13. Bluck, M., Walker, S.: High-order discrete Helmholtz decompositions for the electric field integral equa-
tion. IEEE Trans. Antennas Propag. 55(5), 1338 (2007)

14. Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold,
D.D., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretiza-
tion. The IMA Volumes in Mathematics and Its Applications, vol. 142, pp. 89–120. Springer, Berlin
(2005)

15. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion
problems on generalized polyhedral meshes. Comput.Methods Appl. Mech. Eng. 196, 3682–3692 (2007)

16. Codecasa, L., Specogna, R., Trevisan, F.: A new set of basis functions for the discrete geometric approach.
J. Comput. Phys. 229(19), 7401 (2010)

17. Tonti, E.: Why starting from differential equations for computational physics? J. Comput. Phys. B 257,
1260–1290 (2014)

18. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for the Stokes equations on poly-
hedral meshes. arXiv:1401.7842 (2014)

19. Angot, P., Caltagirone, J.P., Fabrie, P.: Fast discrete Helmholtz–Hodge decompositions in bounded
domains. Appl. Math. Lett. 26 (2013, to appear)

20. Gutknecht, M.H.: Variants of BICGSTAB for matrices with complex spectrum. SIAM J. Sci. Comput.
14(5), 1020–1033 (1993)

21. Sleijpen, G.L., Fokkema, D.R.: BiCGstab (l) for linear equations involving unsymmetric matrices with
complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)

22. Intel. Math Kernel Library. http://developer.intel.com/software/products/mkl/
23. Bell, W.N.: Algebraic multigrid for discrete differential forms. Ph.D. thesis, Champaign, IL (2008)
24. Ren, Z.: Influence of the rhs on the convergence behaviour of the curl-curl equation. IEEE Trans. Magn.

32(3), 655–658 (1996)
25. Eymard, R., Henry, G., Herbin, R., Hubert, F., Klofkorn, R., Manzini, G.: 3d benchmark on discretization

schemes for anisotropic diffusion problems on general grids. In: Proceedings of Finite Volumes for
Complex Applications VI. Springer (Springer, Praha), pp. 895–930 (2011)

123

http://arxiv.org/abs/1401.7842
http://developer.intel.com/software/products/mkl/

	Discrete Helmholtz--Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators
	Abstract
	1 Introduction
	2 Compatible Discrete Operators
	2.1 Discrete Domain
	2.2 Degrees of Freedom
	2.3 Discrete Operators

	3 Discrete Decomposition Strategies
	3.1 Edge-Based DHHD
	3.2 Face-Based DHHD

	4 Numerical Results
	4.1 Discrete Norms
	4.2 Linear Solvers
	4.3 Numerical Experiments
	4.3.1 Cartesian Meshes
	4.3.2 Polyhedral Meshes


	5 Conclusion
	Acknowledgments
	References




