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The motivation of this work is to carry out parallel simulations of incompressible flows on block-struc-
tured meshes. A new partitioning method is proposed. The quality of rectangular partitions is checked
and compared with other methods, as regards load balance, edge-cut and block numbers. The partitioner
is coupled with the massively parallel Hypre solver library and efficiency of the coupling is measured.
Finally, the code is applied to study laminar flows (steady and unsteady) on three non-rectangular
geometries. Very fine grids are used to compute reference solutions of a Z-shaped channel flow and
the L-shaped and double lid driven cavities.
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1. Introduction used in elsA software [7] which is devoted to compressible flows
Flow simulations on complex geometries require either block-
structured or unstructured grids. The latter allow very complex
geometries to be meshed leading to complex discretization
schemes and solvers that require a table of connectivity between
nodes and indirect addressing. If the geometry is not too compli-
cated, it can be divided into a reasonable number of structured
and conforming blocks. The volume control aspect and lexical
numbering facilitate the discretization of the equations (specially
if the grid remains orthogonal) and the use of the fastest parallel
solvers dedicated to the structured grids.

Solver performances are closely linked to the mesh partitioning
or the matrix graph. Partitioning methods can be divided into two
classes: geometric and combinatorial [1]. Geometric techniques
are based on the coordinates of the mesh nodes whereas combina-
torial partitioning uses the graph or the hypergraph of the mesh.
Geometric techniques produce lower quality partitions than com-
binatorial methods but are extremely fast. For unstructured
meshes, partitioner libraries such as CHACO [2], METIS [3], SCOTCH
[4] are available. Unfortunately, they are not well suited to the
block-structured framework since they produce unstructured par-
titions, as shown in Fig. 1. For block-structured meshes, few works
have been carried out. The two main strategies used for the parti-
tioning of such meshes are the recursive edge bisection [5] and the
so-called greedy algorithm [6]. These geometric techniques are
ll rights reserved.
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around complex geometries. We can also cite the works of Rant-
akokko [8] who proposes a framework for partitioning composite
grids. In our opinion, his more interesting approach consists in a
graph strategy applied at the block level instead of the node level
(block refinement is also proposed).

Our goal consists in providing a partitioning strategy for block-
structured geometries which produces rectangular partitions. It
can be classified as a geometric method even if the coordinates
of the nodes are not used. The partitioner is coupled with the mas-
sively parallel solver and preconditioner Hypre library [9], more
precisely with the semicoarsening geometric multigrid solver
[10,11]. Firstly, we are going to present the different steps upon
which the proposed method relies. Then, we will compare the
quality of the partitions with other approaches and analyse the
performance of the coupling with Hypre solvers. Lastly, we will ap-
ply our code to compute incompressible flows on non-rectangular
geometries that have been scarcely studied so far.

2. Partitioning strategy

Firstly, let us recall the two main qualities of a partitioner:

� It must respect load balancing between processors: each pro-
cessor should have nearly the same amount of work to do to
minimize idle processors. In our context, each processor
should have around the same number of nodes, close to
the ideal load which is equal to the number of nodes divided
by the number of processors.

http://dx.doi.org/10.1016/j.compfluid.2010.07.009
mailto:ahusborde@enscbp.fr
http://dx.doi.org/10.1016/j.compfluid.2010.07.009
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


Fig. 1. Partitioning provided by METIS.
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� It must minimize explicit communication between proces-
sors, i.e. the surface-to-volume ratio or edge-cuts. The goal
is to delay as far as possible the moment when communica-
tions between processors increase such that efficiency col-
lapses as the number of processors rises.
The conceptual interface [12] of Hypre is quite complete and
supports four options: structured grid, block-structured grid, finite
Geometry First decomposition
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Fig. 3. Elementary
element interface, and linear algebraic interface. The fastest solvers
such as geometric multigrid ones are available for structured grids,
and block-structured grids, which is our framework. The interface
requires global indexing of the nodes and rectangular boxes that
can be non-contiguous. In the next sections, we will present the
main steps of the partitioner and finally a complete algorithm that
can be used in another solver framework.
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Fig. 4. Merging of elementary block into rectangular macro-blocks.
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2.1. An elementary block decomposition

In our opinion, the partitioner should be independent of the ini-
tial block construction. For instance, two geometries are defined on
the left part of Fig. 2. On the right part, different ways to decom-
pose them, into three or four blocks are presented (that can be later
meshed). Meshes are not shown but they are continuous through
the interfaces between blocks. In the proposed method, the same
partition will be produced for any geometry decomposition. This
approach avoids having to consider parallelism during the con-
struction phase of the mesh.

Consequently, the first step consists of splitting the main blocks
into elementary ones. This is done by lengthening each boundary
line. Intersections between lines define corners of new elementary
blocks. For instance in Fig. 3, three blocks of the first geometry are
split into seven elementary ones, whereas the four blocks of the
second geometry are divided into 10 elementary ones. At this
point, we can make three remarks:

� These elementary blocks are now the starting point of our
partitioner.
� There is no reason for these blocks to be balanced.
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� These blocks could have been created during the construction
phase of the mesh, but it can become really fastidious for a large
number of blocks.

2.2. Block merging

The second step of the partitioner consists in merging the ele-
mentary blocks into macro-blocks. In Fig. 4, we have merged 10
elementary blocks into four macro-blocks. The first macro-block
is the largest of all possible macro-blocks. Then with the remaining
elementary blocks, we choose the largest remaining macro-block
and so on until there is no more elementary blocks. The idea of
generating macro-blocks as big as possible is to minimize the num-
ber of blocks (and consequently to maximize their size) for which
we are able to construct simple and optimal partitioning. Each
macro-block is split into three zones (see Fig. 5). The main zone
is zone 1 while zones 2 and 3 are residual zones.
2.2.1. Main zone
The size of the main zone is chosen such that it is a multiple of

the ideal load. Then, straightforward partitioning that minimizes
edge-cuts and respects load balancing is applied.

The number of cells in each direction of space is taken as an in-
put by the partitioning (Nx = number of cells in the x direction,
Ny = number of cells in the y direction). It can produce square or
rectangular partitions. We also consider a special case if the
number of processor associated to the zone 1 is a prime number
(see Fig. 6).
2.2.2. Residual zones
Residual zones 2 and 3 of two different macro-blocks are asso-

ciated to one processor so that the sum of their size is equal to the
ideal load. Thus, load balancing is ensured (see Fig. 5).

We can note in Fig. 4 that very small macro-blocks (the darker
one) can be composed just of one zone 2 or the sum of zones 2 and
2 31
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al zones.
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r the main zone.
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Fig. 7. Block merging rules.

Table 1
Partitioner performance for the double cavity mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.54 0.44 1.40 2.87
Load imbalance METIS (%) 1.54 2.28 3.17 3.28
Load imbalance REB (%) 17.07 17.07 17.08 17.08
Load imbalance GA 0.001 (%) 0.08 0.08 0.09 0.09
Load imbalance GA 0.05 (%) 0.97 4.49 5 4.85

Edge-cuts present 2829 4584 7513 11,360
Edge-cuts METIS 3230 4853 7507 11,176
Edge-cuts REB 2300 3800 6000 9000
Edge-cuts GA 0.001 3183 5042 7706 13,259
Edge-cuts GA 0.05 3077 4636 7303 12,961

Number of blocks present 11 19 35 66
Number of blocks METIS 8 16 32 64
Number of blocks REB 8 16 32 64
Number of blocks GA 0.001 21 49 87 171
Number of blocks GA 0.05 14 22 41 94
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3. These zones can create some non-contiguous regions on the
same processor.

2.3. Node partitioning

If we had used cell partitioning, further caution would not have
been necessary. With node partitioning, however, care has to be ta-
ken to the boundaries between blocks that can lead to non-rectan-
gular macro-blocks. Indeed, as shown in Fig. 7, there exist two
configurations that produce a broken boundary line. The only solu-
tion is to split the blocks in two parts. These configurations are
quite rare in the cases we have studied.

From this set of geometric considerations, an Algorithm 1 has
been extracted that can be applied to any 2D block-structured grid.

Algorithm 1. Partitioning strategy

1: Elementary block splitting
2: for Each elementary block do
3: Create the list of all possible rectangular macro-blocks

associated to the elementary block
4: end for
5: while Macro-block partitioning not finished do
6: Choose the biggest remaining macro-block
7: if Configuration 1 then
8: Reject the macro-block from the list
9: else if Configuration 2 then
10: Cut the block and update macro-block list
11: else
12: Accept the macro-block and update macro-block list
Fig. 8. Partitioning of a d
13: end if
14: end while
15: for Each macro-block do
16: Construction of the main zone and residual zones
17: Partitioning of the main zone
18: end for
19: return
3. Block-structured partitioner quality and performance

3.1. Load balancing and edge-cuts

In this section, we test the quality of the partitioner concerning
the load balancing, the number of edge-cuts, the number of blocks
and the time consumed by the partitioning in comparison with
those using METIS, the recursive edge bisection (REB) and the gree-
dy algorithm (GA). For the two latters, results have been obtained
with elsA software [7]. Several examples are considered.

The first example is the double cavity geometry, composed of
three blocks, four elementary blocks and 4 � 105 nodes. Fig. 8
represents the partitions for 16 and 64 processors (one colour
per processor). Table 1 compares load imbalance, edge-cut and
block numbers between the different approaches.

The second example concerns a Z-shaped canal with three
blocks, five elementary blocks and 5 � 105 nodes. Again, Fig. 9 rep-
resents the partition for 64 processors whereas Table 2 compares
performances.
ouble cavity mesh.



Fig. 9. Partitioning of a Z-shaped canal mesh.

Table 2
Partitioner performance for the Z-shaped canal mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.42 0.40 0.91 1.37
Load imbalance METIS (%) 1.66 3.07 3.24 3.15
Load imbalance REB (%) 47.63 47.63 47.63 47.64
Load imbalance GA 0.001 (%) 0.08 0.09 0.08 0.1
Load imbalance GA 0.05 (%) 1.45 4.14 4.77 4.93

Edge-cuts present 2016 3692 6351 10,949
Edge-cuts METIS 2247 4055 7096 11,700
Edge-cuts REB 1773 3140 5640 8843
Edge-cuts GA 0.001 2521 4345 7625 14,317
Edge-cuts GA 0.05 2335 3864 7219 13,756

Number of blocks present 10 18 34 66
Number of blocks METIS 8 16 32 64
Number of blocks REB 8 16 32 64
Number of blocks GA 0.001 21 50 80 164
Number of blocks GA 0.05 12 20 49 91

Table 3
Partitioner performance for the ring mesh.

Number of processors 8 16 32 64

Load imbalance present (%) 0.10 0.15 0.35 0.86
Load imbalance METIS (%) 0.43 1.17 2.39 2.92
Load imbalance REB (%) – – – –
Load imbalance GA 0.001 (%) 0.08 0.05 0.08 0.05
Load imbalance GA 0.05 (%) 0.56 1.19 2.46 4.99

Edge-cuts present 2254 4346 7884 14,439
Edge-cuts METIS 2240 4746 10,113 16,482
Edge-cuts REB – – – –
Edge-cuts GA 0.001 12,730 14,052 15,805 19,524
Edge-cuts GA 0.05 12,504 13,409 14,800 18,342

Number of blocks present 17 25 41 73
Number of blocks METIS 8 16 32 64
Number of blocks REB – – – –
Number of blocks GA 0.001 50 68 109 180
Number of blocks GA 0.05 42 48 60 92

CPU present time (s) 0.04 0.048 0.048 0.048
CPU time METIS (s) 1.24 1.23 1.29 1.32
CPU time REB (s) – – – –
CPU time GA 0.001 (s) 1.63 1.64 1.65 1.67
CPU time GA 0.05 (s) 1.63 1.64 1.63 1.65
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The third and last example is a ring with 10 blocks, 27 elemen-
tary blocks and 1.5 � 105 nodes. Again, Fig. 10 represents the par-
tition for 64 processors while Table 3 compares performances.

These test cases underline very good load imbalance lower than
1% if the number of processors is not too high. It confirms that
splitting macro-blocks into three zones is efficient, residual zones
being associated to verify ideal load. Lower load imbalance cannot
be reached because the precision of the partitioner is equal to the
Fig. 10. Partitioning of a ring mesh.
length of a mesh line (necessary to keep rectangular partitions). If
the number of processors increases, load imbalance increases but
remains lower than 3%. Here, the partitioning effect of zone 1 is
more visible: the size of a line of the mesh is relatively high in
comparison with the size of the partition. The number of edge-cuts
is overall very good, better than with METIS. REB method shows
optimal results as regards edge-cut and block numbers but very
high load imbalance (up to 47%) which is a crippling default. More-
over, this method did not provide acceptable results for the ring
mesh probably because of the circular aspect of the geometry. Load
imbalance produced by the GA is controlled by an epsilon param-
eter which has a consequence on the number of blocks generated:
the lower is � the lower is the load imbalance, but the greater is the
number of blocks. Two values for � have been used: 0.05 and 0.001.
For � = 0.001 load imbalance is very low, edge-cut number is
acceptable but the number of blocks is more than the double of
the number of processors. That leads to a high number of non-con-
tiguous subdomains associated to a processor: it can reduce solver
efficiency and it increases the memory requirement due to the
multiplication of ghost cells necessary to the communications be-
tween processors [7]. For � = 0.05, load imbalance is higher than
our method, as well as edge-cut and block numbers. Finally for
the ring example, CPU time shows that the proposed block-ap-
proach is much faster (nearly 30 times) than the other methods.
This point could be even more relevant for 3D partitioning where
CPU time is much longer. We can conclude that the proposed
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method is efficient for the studied geometries and shows a good
compromise between all the partitioning requirements.
0 64 128 192 256 320 384 448 512

Number of processors

0.4

0.5

0.6

0.7

0.8

0.9

W
ea

k 
ef

fi
ci

en
cy

Harpertown 32500 dof
Nehalem 65000 dof
Nehalem 32500 dof

Fig. 12. Weak scaling versus the number of processors.
3.2. Scalability

The efficiency of coupling the partitioner and the Hypre library
is illustrated solving the Poisson equation obtained from one
velocity correction step [13] which is very CPU time consuming
in a Navier–Stokes solver. The studied problem is the double lid
driven cavity flow.

The solver is a Generalized Minimal Residual Method (GMRES)
associated to the geometric semicoarsening multigrid precondi-
tioner. The relative residual is set to 10�10. The code runs on an
SGI ICE cluster. Two types of processors have been used:
Harpertown nodes linked to a DDR Infiniband network and Neha-
lem nodes linked to a QDR Infiniband network.

In parallel computing, two types of scalability are defined. The
first is the strong scaling, which represents the relation between
the computation time and the number of processors for a fixed to-
tal problem size. The second is the weak scaling, for which the load
per processor is constant.
3.2.1. Weak scaling
Fig. 11 displays for each type of processor (Harpertown and

Nehalem) CPU time as a function of the number of processors, with
32,500 and 65,000 degrees of freedom (dof) per processor. We can
see that processors Nehalem are much faster than Harpertown
ones, particularly if the number of processors is low. A time ratio
from 1.3 to 2.1 can be observed.

Weak efficiency is given by:
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where p denotes the number of processors used for the reference
time (not always equal to one for heavy computations). Efficiency
equal to one indicates an optimal behaviour for the algorithm and
the computer architecture. Indeed, CPU times remains constant,
equal to the reference time, while the total size of the problem in-
creases with the number of processors. Usually, this property is
hardly verified and curves with plateaus can be observed. Values
of the plateaus rise toward one with the load of each processor. This
phenomenon is illustrated in Fig. 12. Weak efficiency is better for
the Harpertown cluster than the Nehalem one, besides a longer
computation time.
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Fig. 11. CPU time versus the number of processors.
3.2.2. Strong scaling
Fig. 13 displays for each type of processor (Harpertown and

Nehalem) on a logarithmic scale, CPU time as a function of the
number of processors for two fixed size problems of 1 and 16 mil-
lion degrees of freedom. Again, processors Nehalem are much fas-
ter than Harpertown ones.

Strong efficiency is given by:

SE ðNÞ ¼ CPU time on p processors� p
CPU time on N processors� N
Fig. 13. CPU time versus the number of processors.
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where p denotes the number of processors used for the reference
time (not always equal to one for heavy computations). It points
out an optimal use of the parallel resources. Efficiency equal to
one indicates that communications and synchronizations between
processors are negligible.

Fig. 14 represents the strong scaling versus the number of pro-
cessors on a semi-logarithmic scale. With the Harpertown archi-
tecture and 16 million dof, a very high efficiency greater than 0.8
for up to 1024 processors can be observed (16,000 dof per proces-
sor). The first part of the graph being over the expected efficiency is
due to memory bandwidth saturation when the number of proces-
sors is low that leads to a long reference time in the strong effi-
ciency formula. Using more processors leads to smaller tasks that
lead to a performance increase when more and more data can be
kept in cache. With 1 million dof, this effect is less visible ans scal-
ing is very good up to 128 processors (8000 dof per processor).
With the Nehalem architecture which has a much higher memory
bandwidth (more than three times), efficiency curves have the ex-
pected behaviour. Consequently, optimal efficiencies are obtained
for 512 and 32 processors respectively for the 16 and 1 million
dof problems. The saturation of the efficiency due to the increase
of the communications between processors appears earlier with
this architecture.

The next part of the article is devoted to the study of incom-
pressible flows in non-rectangular geometries using the approach
proposed here.
4. Computations of incompressible flows on non-rectangular
geometries

Laminar flows in rectangular geometries, such as the lid driven
cavity [15,16], have been extensively studied in the literature.
Several numerical methods have been compared and reference
solutions are available for a wide range of Reynolds numbers
(leading to stationary or unsteady flows). In the present study,
we propose a precise solution of flows for three non-rectangular
geometries, scarcely studied so far.

Time discretization of the Navier–Stokes equations is implicit
thanks to Gear’s second order backward differentiation formula
[14]. A pressure correction method (see Goda [13]) is used to solve
the velocity–pressure coupling. Spatial discretization (second or-
der centered scheme) is based on the finite volume method on a
staggered grid of the Marker and Cells type. Solvers of the Hypre
library are used.
4.1. Z-shaped channel

Flow in a Z-shaped channel has been studied in [17,18]. The chan-
nel has an abrupt expansion and contraction of it section (with a ra-
tio of two), associated with a change of direction (horizontal
contracted sections and a vertical expanded one). In our study, the
Reynolds number Re is based on the width of the channel and the
mean value of the inlet velocity. We can note that in [17], the Rey-
nolds number is defined from the mean velocity umean while in
[18], it is defined from the maximal velocity umax = 1.5umean. A
Poiseuille velocity profile is imposed at the inlet while Neumann
and wall conditions are respectively imposed at the outlet, upper
and lower sides. We have studied the flow for Re = 200. The stream-
lines and the points P i(xi, yi) of detachment and reattachment of the
flow are presented in Fig. 15. Three main recirculations are created.
The first and biggest one occupies almost one-half of the expanded
region. The second eddy is developed in the upper right-hand corner
while the third one is attached to the upper boundary at the begin-
ning of the last contracted horizontal section. An infinite series of
Moffat corner vortices [19] of increasingly smaller amplitude ap-
pears in the lower left and the upper right corners (see zooms in
Fig. 15). Four increasingly fine grids with 3.75 � 103, 1.5 � 105,
6 � 105, 2.4 � 106 nodes were used.

4.1.1. Velocity profiles
In Fig. 16, we compare our velocity profiles at different sections

with those obtained in [17]. We can note good accordance in the



Table 4
Positions (x, y) and intensities of the primary vortices.

Reference Main primary vortex (x, y) Vorticity

Mesh 1 (2.8097, 0.83996) �1.29348
Mesh 2 (2.8117, 0.83881) �1.28848
Mesh 3 (2.8127, 0.83797) �1.28474
Mesh 4 (2.8133, 0.83748) �1.28253

Reference Upper primary vortex (x, y) Vorticity

Mesh 1 (3.5884, 4.9967) 0.75678
Mesh 2 (3.5861, 4.9945) 0.75393
Mesh 3 (3.5849, 4.9925) 0.75299
Mesh 4 (3.5845, 4.9914) 0.75279

Reference Lower primary vortex (x, y) Vorticity

Mesh 1 (5.3985, 0.70982) 4.4441
Mesh 2 (5.3893, 0.71240) 4.3645
Mesh 3 (5.3716, 0.71392) 4.3239
Mesh 4 (5.3684, 0.71469) 4.3054

Table 6
Positions (xi, yi) of the detachment and reattachment points P i(i = 1,10).

Reference P 1(x1, y1) P 2(x2, y2)

Mesh 1 (2.4249, 5.625) (4, 4.3519)
Mesh 2 (2.3750, 5.625) (4, 4.3519)
Mesh 3 (2.3500, 5.625) (4, 4.3394)
Mesh 4 (2.3406, 5.625) (4, 4.3332)

Reference P 3(x3, y3) P 4(x4, y4)

Mesh 1 (7.6250, 1) (2, 0.20008)
Mesh 2 (7.6250, 1) (2, 0.22499)
Mesh 3 (7.6313, 1) (2, 0.23124)
Mesh 4 (7.6281, 1) (2, 0.23126)

Reference P 5(x5, y5) P 6(x6, y6)

Mesh 1 (2.2749, 0) (3.7750, 0)
Mesh 2 (2.2875, 0) (3.7749, 0)
Mesh 3 (2.3063, 0) (3.7812, 0)
Mesh 4 (2.3094, 0) (3.7812, 0)

Reference P 7(x7, y7) P 8(x8, y8)

Mesh 1 – –
Mesh 2 (3.9374, 5.625) (4, 5.5624)
Mesh 3 (3.9249, 5.625) (4, 5.5496)
Mesh 4 (3.9187, 5.625) (4, 5.5437)

Reference P 9(x9, y9) P 10(x10, y10)

Mesh 4 (2, 0.0125) (2.0125,0)
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results except for the section x = 9 where the Poiseuille flow is re-
stored more quickly for [17]. The very coarse grid (7000 nodes)
used in [17] could explain this difference. There are no other data
in the literature to compare with. We thus present our values of
positions and intensities of the vortices.
(1,1)(0,1)

1
u  = 1, u  = 0 

2
4.1.2. Positions and intensities of the vortices
Table 4 represents the positions and intensities of the three pri-

mary vortices versus the mesh size for Re = 200. Positions and
intensities of the secondary and ternary vortices are presented in
Table 5. Only mesh 4 is fine enough to capture the ternary vortex.
Finally, Table 6 reports the positions of the detachment and reat-
tachment points P i(i = 1,10) defined in Fig. 15. Convergence is
achieved of two to four significant digits.
(0.5,0.5)

(0.5,0) (1,0)

(0,0.5)

Fig. 17. Streamlines for the L-shaped driven cavity.

1

4.2. L-shaped driven cavity

Flow in an L-shaped driven cavity has been studied in
[17,18,20]. The fluid is driven by the upper side while the other
boundaries are walls. The configuration and the streamlines are
presented in Fig. 17 for a Reynolds number Re = 1000 (based on
the cavity width and the lid velocity). The presence of a step inside
the cavity induces three recirculation zones, two in the upper part
of the cavity and one in the lower. The main recirculation is located
in the upper right part. Secondary vortices, whose size increases
with increasing Re, appear in the corners of the cavity. If the grid
is fine enough, ternary vortices can be computed. The study is car-
ried out for Re = 1000. Four increasingly fine grids with 1.25 � 105,
5 � 105, 2 � 106 and 8 � 106 nodes were used.
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Table 5
Positions (x, y) and intensities of the secondary vortices.

Reference Upper secondary vortex (x, y) Vorticity

Mesh 1 – –
Mesh 2 (3.9676, 5.5924) �0.00429
Mesh 3 (3.9659, 5.5907) �0.00512
Mesh 4 (3.9655, 5.5902) �0.00533

Reference Lower secondary vortex (x, y) Vorticity

Mesh 1 (2.1176, 0.10110) 0.10198
Mesh 2 (2.1188, 0.10185) 0.10283
Mesh 3 (2.1191, 0.10215) 0.10272
Mesh 4 (2.1193, 0.10219) 0.10241

Reference Lower ternary vortex (x, y) Vorticity

Mesh 4 (2.00632, 0.00632) �6.22 � 10�4



Table 8
Positions (x, y) and intensities of the secondary vortices.

Reference Upper left secondary vortex (x, y) Vorticity

Mesh 1 (0.01430, 0.51450) �0.01112
Mesh 2 (0.01441, 0.51463) �0.01140
Mesh 3 (0.01443, 0.51466) �0.01147
Mesh 4 (0.01444, 0.51467) �0.01148

Reference Lower left secondary vortex (x, y) Vorticity

Mesh 1 (0.51804, 0.01850) �0.00780
Mesh 2 (0.51814, 0.01859) �0.00796
Mesh 3 (0.51815, 0.01861) �0.00801
Mesh 4 (0.51815, 0.01861) �0.00802

Reference Lower right secondary vortex (x, y) Vorticity

Mesh 1 (0.98356, 0.01641) �0.004610
Mesh 2 (0.98343, 0.01653) �0.004739
Mesh 3 (0.98341, 0.01656) �0.004768
Mesh 4 (0.98340, 0.01657) �0.004778

Table 9
Positions (x, y) and intensities of the ternary vortices.

Reference Upper left ternary vortex (x, y) Vorticity

Mesh 3 (6.864 � 10�4, 0.50068) 3.17 � 10�5

Mesh 4 (8.279 � 10�4, 0.50082) 7.00 � 10�5

Reference Lower left ternary vortex (x, y) Vorticity

Mesh 3 (0.99922, 7.772 � 10�4) 1.40 � 10�5

Mesh 4 (0.99902, 9.705 � 10�4) 3.21 � 10�5

Reference Lower right ternary vortex (x, y) Vorticity

Mesh 3 (0.50094, 9.416 � 10�5) 3.06 � 10�5

Mesh 4 (0.50107, 1.070 � 10�4) 5.31 � 10�5
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Fig. 19. u2 profile at y = 0.74 versus x.
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4.2.1. Velocity profiles
In Figs. 18 and 19, the velocity profiles at x = 0.75 and y = 0.74

present good accordance with those obtained in [20,18].

4.2.2. Positions and intensities of the vortices
Tables 7 and 8 represent the positions and the intensities of the

primary and secondary vortices. Table 9 displays the positions and
the intensities of the ternary vortices that can be only computed
for meshes 3 and 4. Convergence of up to 2–4 digits is reached.

4.3. Double lid driven cavity

Flow in a double lid driven cavity has been recently studied in
[21,22]. This configuration is presented in the left upper part of
Fig. 20. The fluid is driven by the lower and upper boundaries in
opposite directions. The other boundaries are walls. The Reynolds
number Re is based on the cavity length L and the lid velocity.
We focused on two flow ranges according to the value of the Rey-
nolds number in relation to its critical value Rec:

� Re < Rec: the flow is stationary. We can note three different
regimes represented in Fig. 20. On the upper right part for
Re = 100, twin primary eddies are created between the two driv-
ing lids while secondary vortices appear in the left and right
Table 7
Positions (x, y) and intensities of the primary vortices.

Reference Upper right primary vortex (x, y) Vorticity

Oosterlee [20] (0.6938,0.7509) –
Mesh 1 (0.69440, 0.75113) �3.87659
Mesh 2 (0.69408, 0.75101) �3.87413
Mesh 3 (0.69394, 0.75097) �3.87279
Mesh 4 (0.69388, 0.75094) �3.87212

Reference Upper left primary vortex (x, y) Vorticity

Oosterlee [20] (0.1822,0.7515) –
Mesh 1 (0.18417, 0.75078) 1.21124
Mesh 2 (0.18386, 0.75091) 1.20968
Mesh 3 (0.18417, 0.75095) 1.20901
Mesh 4 (0.18417, 0.75097) 1.20870

Reference Lower right primary vortex (x, y) Vorticity

Oosterlee [20] (0.6866,0.3089) –
Mesh 1 (0.68741, 0.30940) 0.96079
Mesh 2 (0.68731, 0.30923) 0.96074
Mesh 3 (0.68729, 0.30918) 0.96078
Mesh 4 (0.68728, 0.30911) 0.96081
corners. In the lower left part for Re = 1000, the two primary
vortices coalesce and two secondary vortices appear. Finally,
in the lower right part for Re = 3000, the primary eddy becomes
horizontal. The size of the two latter secondary vortices
increases and two new secondary eddies appear (vertically on
the upper right and lower left parts of the domain). However,
it is now well-known [23] that cavity flows experience 3-
dimensional global instability well below Rec. Consequently,
for Re P Re3D

c 2-dimensional studies are not physical anymore
even if they can present numerical interests. Re3D

c has been
recently identified for the double and cross-sectional cavity
flows [24]. For the former, it characterizes the transition
between the two first flow regimes.
� Re P Rec: the flow becomes 2D unsteady, from periodic to cha-

otic. In [15,16], a study was carried out to identify the transition
from stable to periodic flow in the case of the 2D lid driven
square cavity flow. The flow becomes unstable via a Hopf bifur-
cation. In [16], the first Lyapunov exponent was used to com-
pute a critical Reynolds number Rec close to 8000. In [15],
thanks to a different approach (unsteady simulations with small
time step), the first Hopf bifurcation occurs for Rec = 7402. Sev-
eral subcritical and supercritical flow regimes were identified.

4.3.1. Steady flow
For the study of the steady flow, we focus on Re = 1000. The

lower left part of Fig. 20 displays the streamlines. As described
above, a primary vortex and four secondary eddies appear. With
very fine meshes, ternary vortices appear between the secondary
ones and the corner of the domain (see right part of Fig. 21). These
vortices were not shown in previous studies [21,22]. Fig. 21 repre-
sents two zooms in which we define the points P i(xi, yi) of detach-
ment and reattachment of the flow. The results found in the
literature are given on the intensities and positions of the vortices.
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In the present study, the results were obtained with convergence
criteria on stationarity below 10�12 between two consecutive iter-
ations. Four increasingly fine grids with 6.25 � 104, 2.5 � 105, 106

and 4 � 106 nodes have been used.
Table 10
Positions (x, y) and intensities of the main vortex.

Reference Main vortex (x, y) Vorticity

Zhou [21] (0.70000, 0.70000) �1.41562
Nithiarasu [22] (0.68950, 0.69690) �1.52363
Present (mesh 1) (0.70099, 0.70070) �1.49753
Present (mesh 2) (0.69996, 0.69996) �1.49974
Present (mesh 3) (0.70000, 0.70000) �1.49858
Present (mesh 4) (0.69999, 0.69999) �1.49838

Table 11
Positions (x, y) and intensities of the secondary vortices.

Reference Lower secondary vortex (x, y) Vorticity

Zhou [21] (0.72560, 0.20000) 2.38559
Nithiarasu [22] (0.85230, 0.20150) 2.60588
Present (mesh 1) (0.84952, 0.19744) 2.60184
Present (mesh 2) (0.85055, 0.19637) 2.59861
Present (mesh 3) (0.85112, 0.19587) 2.59770
Present (mesh 4) (0.85139, 0.19563) 2.59745

Reference Right secondary vortex (x, y) Vorticity

Zhou [21] (1.32500, 0.48440) 0.53846
Nithiarasu [22] (1.32210, 0.48360) 0.65005
Present (Mesh 1) (1.32226, 0.48356) 0.63099
Present (Mesh 2) (1.32243, 0.48353) 0.62956
Present (Mesh 3) (1.32249, 0.48349) 0.62971
Present (Mesh 4) (1.32253, 0.48346) 0.62996



Table 12
Positions (x, y) and intensities of the right ternary vortex.

Reference (x, y) Vorticity

Mesh 1 – –
Mesh 2 (1.39579, 0.40420) �0.002911
Mesh 3 (1.39531, 0.40468) �0.004380
Mesh 4 (1.39522, 0.40478) �0.004718

Table 13
Positions (xi, yi) of the detachment and reattachment points P i(i = 1,5).

Reference P 1(x1, y1) P 2(x2, y2) P 3(x3, y3)

Mesh 1 (1, 0.09999) (1.23999, 0.4) (1, 0.63999)
Mesh 2 (1, 0.09999) (1.23748, 0.4) (1, 0.64499)
Mesh 3 (1, 0.09874) (1.23624, 0.4) (1, 0.64874)
Mesh 4 (1, 0.09937) (1.23563, 0.4) (1, 0.64999)

Reference P 4(x4, y4) P 5(x5, y5)

Mesh 1 – –
Mesh 2 (1.3925, 0.4) (1, 0.4075)
Mesh 3 (1.3900, 0.4) (1, 0.4100)
Mesh 4 (1.3887, 0.4) (1, 0.4112)
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4.3.1.1. Velocity profiles. In Fig. 22, the velocity profiles at x = 0.7
and y = 0.7 present good accordance with those obtained by Zhou
et al. [21].
4.3.1.2. Positions and intensities of the vortices. Tables 10 and 11 rep-
resent the positions and intensities of the primary and secondary
vortices as a function of the mesh size for Re = 1000. Positions
and intensities of the ternary vortex are shown in Table 12. For
the sake of conciseness, we only focus on the positions and the
intensities of one ternary and two secondary vortices. The others
can be obtained symmetrically in relation to the center of the
cavity. We observed symmetrical values to up to four or five signif-
69 70 71 72 73 74 75 76 77

Time

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

V
el

oc
ity

u
1

u
2

0 1 2 3 4 5 6 7 8
Frequency

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

A
m

pl
itu

de

-0.29 -0.285 -0.28 -0.275 -0.27 -0.265
u

1

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

u
2

(b) (c)

(a)

Fig. 23. Flow for Re = 5000. (a) u1 and u2 versus time t. (b) Phase trajectory on
u1 � u2 plane. (c) Fourier power spectrum of the u1 velocity.
icant digits. Table 13 displays the positions of the detachment and
reattachment points P i(i = 1,5) defined in Fig. 21. In [21,22], the
authors use coarser grids which could explain the difference be-
tween their values and ours for the primary vortices.
4.3.2. Unsteady flow
In this section, we propose a first insight of an unsteady double

lid driven cavity. The transition process is illustrated for Re = 5000
and Re = 10,000 using time velocity histories, Fourier power spec-
tra and phase-space trajectories.

In the present case, we used mesh 3 (106 nodes). Flow becomes
unsteady and periodic for 3480 < Re < 3500 whereas Zhou [21] pre-
sents an unsteady flow at Re = 3200. This difference can be due to
his coarser grids.

For Re = 5000, the time evolution of u1 and u2 variables, the
phase trajectory on u1 � u2 plane and the power spectrum at the
point (x = 1, y = 1) between t = 69 s and t = 77 s are represented in
Fig. 23. The flow is periodic with a fundamental frequency equal
to 2.1151 Hz. Fig. 24 represents the evolution of the streamlines
during a period giving prominence to the periodicity of the flow
for Re = 5000. The mean flow is not symmetrical. The right lower
vortex is very unstable while the others remain quite stable. This
phenomenon has already been noticed in the 2D lid driven square
cavity [16].

For Re = 10,000, time evolution of u1 and u2 variables, the phase
trajectory on u1–u2 plane and the power spectrum at the point
Fig. 24. Evolution of the streamlines during a period at Re = 5000 (it reads from left
to right and vertically).
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(x = 1,y = 1) between t = 76 s and t = 81 s are represented in Fig. 25.
The flow becomes quasiperiodic with non-negligible variations in
amplitude. The main frequency equals 4.2729 Hz.

5. Conclusion

In this paper, we proposed a method for partitioning 2D block-
structured meshes. The goal was to compute flow simulations on
non-rectangular geometries. Our geometrical partitioner was cou-
pled with the massively parallel solver and preconditioner Hypre
library. Several examples of partitioning are presented to check,
both the efficiency and the performance of our strategy in compar-
ison with other partitioners. Finally, we computed flow on non-
rectangular geometries with very fine grids to propose reference
solutions.
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