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The scope of this work is to present and discuss the results obtained from simulating
three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in
air and water. Recent progress in computational capabilities has allowed us to run fine
three-dimensional simulations, giving us the opportunity to study for the first time fine
vortex filaments generated during the early stage of the wave breaking phenomenon.
To date, no experimental observations have been made in laboratories, and these
structures have only been visualised in rare documentary footage (e.g. BBC 2009
South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures
are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the
splash-up and the main tube of air, elongated in the main flow direction. The first
part of the paper is devoted to the presentation of the model and numerical methods.
The air entrainment occurring when waves break is then carefully described. Thanks
to the high resolution of the grid, these fine elongated structures are simulated and
explained.
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1. Introduction

In the last three decades, significant attention has been devoted to improving
knowledge of the hydrodynamic processes that occur in the surf zone, and in particular
the breaking of waves. It is generally accepted that breaker types can be classified
as a continuous spectrum from spilling to surging, depending on the initial wave
steepness and the bed slope. The general processes involved in wave steepening and
subsequent breaking are now well known and have been fully described by numerous
authors (Peregrine 1983; Kiger & Duncan 2012). Nevertheless, the wave breaking
phenomenon remains a very challenging fluid mechanics problem, with turbulence
and aeration interactions making it more difficult to investigate in detail.

Depending on the type of breaker, three types of large-scale coherent vortices can be
found in breaking waves (Zhang & Sunamura 1994). The jet-splash cycles, occurring
several times in a single plunging breaker, are responsible for the generation of a
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sequence of large-scale vortices with a horizontal axis of rotation (Bonmarin 1989;
Kimmoun & Branger 2007). Some of these eddies have been shown to be co-rotating
vortices and some counter-rotating vortices. In the case of spilling breakers, Nadaoka,
Hino & Koyano (1989) detailed the flow field under a turbulent bore propagating
towards the shoreline. Large dominant horizontal eddies are present in the bore
front, while behind the wave crest the flow structure changes rapidly into obliquely
downward stretched three-dimensional (3D) eddies, so-called ‘obliquely descending
eddies’. More recently, Kubo & Sunamura (2001) revealed that a new type of
large-scale turbulence, named the ‘downburst’, is present in the breaker zone along
with the previously observed oblique vortex. It is characterised by a descending water
mass without marked rotational features, diverging at the bed and agitating sediment
particles more vigorously than the oblique vortices. Ting (2006) also identified these
downbursts of turbulence descending from the free surface. Very few numerical
works have been dedicated to reproducing these 3D large features, which occur when
waves break (Watanabe & Saeki 1999; Christensen & Deigaard 2001; Watanabe,
Saeki & Hosking 2005; Christensen 2006; Lubin et al. 2006; Lakehal & Liovic
2011). Watanabe & Saeki (1999) investigated the 3D distribution and time variation
of rotating components of velocity induced by wave breaking. They showed that
two-dimensional (2D) large eddy motions generated by wave breaking rapidly broke
down to fully 3D flow structures during splash-up cycle as waves propagate on the
sloping beach. Christensen & Deigaard (2001) found similar results, showing that
3D flow structures spontaneously developed at the breaking point, and identified the
formation of obliquely descending eddies. Nevertheless, these obliquely descending
eddies were not always found to occur, longitudinal eddies with horizontal axes being
observed instead.

Major discussion about the generation of turbulent structures and their interactions
was continued by Watanabe et al. (2005). Spilling, plunging, strongly plunging and
spilling/plunging breakers were simulated. The 2D structure of the flow was found
to evolve in streamwise 3D vortices, owing to a local shear instability analogous to
Kelvin–Helmholtz (KH) instability. Vorticity was shown to be unstable in a saddle
region localised between the rebounding plunging jet and the primary spanwise
vortex formed by the initial free-falling tongue of water ejected from the crest of the
breaking wave. The first splash-up rebounded and induced another main spanwise
vortex. Between the first primary spanwise vortex and this latest one, a vortex loop
took place, undulated and wrapped the adjacent primary vortices to form a rib
structure. Watanabe et al. (2005) speculated that this structure could be the obliquely
descending eddies observed by Christensen & Deigaard (2001). The impact of these
various structures on the free-surface aspect was also illustrated. Finally, the formation
of obliquely descending eddies and the subsequent air entrainment was investigated.
Lakehal & Liovic (2011) presented pictures showing surface deformations similar to
those identified by Watanabe et al. (2005) for plunging breakers.

A limited number of researchers have also focused attention on smaller-scale
processes, such as the degeneration of gravity-dominated jets (e.g. pre-impact
plunging jets) to scars, droplets and spray (Longuet-Higgins 1995; Watanabe et al.
2005; Lakehal & Liovic 2011). Narayanaswamy & Dalrymple (2002) experimentally
presented evidence of ‘fingers’ appearing at the tip of the plunging jet, prior to
impact. More recently, Saruwatari, Watanabe & Ingram (2009) numerically studied the
formation of fingers and scars on the surface of secondary planar jets and suggested
that, as the influence of surface tension increases, the jet surface is prevented from
being scarified and fingered. Handler, Savelyev & Lindsey (2012) experimentally
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(a) (b)

FIGURE 1. Plunging breaking waves filmed from underwater. As the waves break and
move forwards, air is entrained and carried along, causing unusual underwater tornado-like
vortical tubes wrapping around the tube. What you see in both pictures is the tube rolling
towards the shoreline from left to right. On the far right is the white water caused by
the impact of the lip. Pictures used with kind permission of underwater cinematographers
(a) Chris Bryan and (b) Mark Tipple (http://www.theunderwaterproject.com).

investigated the generation of coherent elongated structures behind breaking waves.
These streaks were shown to appear when the crest of a strong breaker interacts
with pre-existing turbulence induced by weaker pre-breakers, suggesting that a
wave–turbulence interaction process could be responsible for streak generation.

On 6 May 2009, BBC Worldwide released a short clip of a large breaking wave
filmed in slow motion (BBC 2009). The high-definition film caught the attention
and curiosity of the scientific community. The video has attracted extremely positive
reactions on the video-sharing website YouTube (more than 4.8 million views at the
time of writing). The beautiful breaking wave, filmed from underwater, revealed for
the first time 3D coherent structures: some beautiful large aerated vortex filaments,
bathtub-like or tornado-like vortices, elongated in the main flow direction, connecting
the splash-up and the main tube of air (figure 1).

Performing numerical simulations of 3D breaking waves requires a large number
of mesh grid nodes, robust and accurate numerical methods, and long CPU time
calculations in order to compute the hydrodynamics from the largest to the smallest
length and time scales (Lubin et al. 2011). Recent progress in computational power
has allowed us to run fine 3D simulations, which gave us the opportunity to study,
for the first time, the fine vortex filaments generated during the early stage of the
plunging wave breaking process, and the subsequent air entrainment. The aim of this
paper is to present the first study of these coherent eddy structures. The numerical
results will be detailed to educe and explain the formation and evolutionary dynamics
of the vortex filaments, and to explore the role of eddies in the air entrainment
process.

2. Numerical model
2.1. Governing equations and numerical methods

An incompressible multiphase flow between non-miscible fluids can be described
by the Navier–Stokes equations in the single-fluid formulation (Kataoka 1986). The
governing equations for the large-eddy simulation (LES) are classically derived by
applying a convolution filter to the unsteady Navier–Stokes equations. The resulting
set of equations describes the entire hydrodynamic and geometrical processes involved
in the motion of multiphase media (2.1)–(2.3):

∇ · u= 0, (2.1)

http://www.theunderwaterproject.com
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ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+ ρg+∇ · ((µ+µt)[∇u+∇tu]) (2.2)

and
∂C
∂t
+ u · ∇C= 0, (2.3)

where u is the velocity, C the phase function, t the time, p the pressure, g the
gravity vector, ρ the density and µ the dynamic viscosity. The turbulent viscosity
µt is calculated with the mixed scale model (Sagaut 1998). Here x, z and y are
respectively the horizontal, vertical and transverse coordinates; and ux, uz and uy are
the corresponding velocity components of the velocity vector u. Surface tension is
not considered in this study, as discussed in § 3.5. The magnitude of the physical
characteristics of the fluids depends on the local phase. They are defined according
to C in a continuous manner as

ρ =Cρw + (1−C)ρa,
µ=Cµw + (1−C)µa,

}
(2.4)

where ρa, ρw, µa and µw are the densities and viscosities of air and water, respectively.
Time discretisation of the momentum equation is implicit and an Euler scheme

is used. The velocity–pressure coupling under the incompressible flow constraint is
solved with the time splitting pressure correction method (Goda 1979). The equations
are discretised on a staggered grid by means of the finite volume method. The space
derivatives of the inertial term are discretised by a hybrid upwind-centred scheme,
whereas the viscous term is approximated by a second order centred scheme.

The interface tracking is achieved by a volume-of-fluid (VOF) method and a
piecewise linear interface calculation (PLIC) (Youngs 1982; Scardovelli & Zaleski
1999). This method has the advantage of building a sharp interface between air and
water. A phase function C is used to locate the different fluids. It is classically
smoothed into C̃ before the calculation of the physical properties (density and
viscosity) is made, using an inverse distance weighting average. The variation of the
fluid properties are then diffused over 2–6 cells, depending of the breaking wave
type and meshes. Finally, since the phase function is not defined at each point where
viscosities and densities are needed for the Navier–Stokes discretisation, the physical
characteristics are interpolated on the staggered grid. We use a linear interpolation to
calculate the density on the velocity nodes, whereas a harmonic interpolation is used
for the viscosity.

The MPI library is used to parallelise the code. The mesh is partitioned into
equal size subdomains to ensure load balancing. Communications between processors
are also minimised (Ahusborde & Glockner 2011). The HYPRE parallel solver
and preconditioner library is used to solve the linear systems (Falgout, Jones &
Yang 2006). The numerical code has already been extensively verified and validated
through numerous test cases, including mesh refinement analysis (Lubin et al. 2006;
Lubin, Chanson & Glockner 2010; Lubin et al. 2011; Poux, Glockner & Azaiez
2011; Brouilliot & Lubin 2013). The accuracy of the numerical schemes and the
conservation laws of mass and energy in the computational domain have been
accurately verified.
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d/L 0.10 0.13 0.17 0.20

0.08 0.09 0.10 0.11
H/L 0.10 0.11 0.12 0.13

0.12 0.13 0.14 0.15

TABLE 1. Initial values for the wave steepness H/L and the dispersion parameter d/L
for the 12 different 3D plunging breaking waves simulated in this paper. According to
previous numerical simulations (Lubin et al. 2006), for a given dispersion parameter value,
the greater the wave steepness is, the stronger the plunging breaking event will be. The
configuration with H/L= 0.13 and d/L= 0.13 is mainly discussed.

Water density, ρw 1000 kg m−3 Water viscosity, µw 1× 10−3 kg m−1 s−1

Air density, ρa 1.1768 kg m−3 Air viscosity, µa 1.85× 10−5 kg m−1 s−1

Gravity, g 9.81 m s−2 Surface tension Neglected

TABLE 2. Physical parameters used for all the 3D numerical simulations.

2.2. Definition of the initial conditions and parameters
We use initial conditions corresponding to a single unstable periodic sinusoidal wave
of large amplitude. This somewhat artificial wave breaking configuration has already
been documented in several previous studies and proved to be effective at simulating
all types of breaking waves (Abadie, Caltagirone & Watremez 1998; Chen et al. 1999;
Lubin et al. 2006; Iafrati 2009).

The rectangular calculation domain is periodic in the wave propagation direction and
one wavelength long. A free-slip boundary condition is imposed at the lower limit,
and an absorption boundary condition at the upper limit. The reference variables of
the initial incident wave are the celerity c (m s−1), the period T (s), the wavelength
L (m), the water depth d (m) and the wave height H (m). In our specific case, the
breaker type is controlled by only two initial parameters, the initial steepness H/L
and the dispersion parameter d/L, which are chosen since the initial wave cannot
remain steady as the initial velocity field in water is not in equilibrium with the initial
wave profile (Lubin et al. 2006; Iafrati 2009). On the basis of the previous works
(Lubin 2004; Lubin et al. 2006), we used the values presented in table 1 to generate
plunging breaking waves, ranging from weak to energetic events. The real air and
water physical properties are used. The physical parameters are summarised in table 2.

The 3D numerical domains are discretised into 1024 × 500 × 200 non-regular
Cartesian cells (more than 100 million mesh grid cells), and partitioned into
1024 subdomains (one processor per subdomain). The grid is evenly distributed
in longitudinal and transverse directions, giving a mesh grid resolution of 1x =
1y= 10−4 m. In the vertical direction, the grid is clustered with a constant grid size
1z = 10−4 m below z = 3 × 10−2 m. A non-regular grid resolution is used above,
with a maximum mesh grid size at the top of the numerical domain. This is further
referred to as the L1 configuration (table 3) using the reference grid (RG) (table 4).
At the initial time of the simulation, the interface and water velocity field from the
wave are obtained from the linear theory and the air is at rest (Lubin et al. 2006).
Hydrostatic pressure is initialised in the whole numerical domain. The computing
time was approximately 24 h, with 1024 cores, for a simulated time of 0.88 s.

Breaking waves are known to entrain a volume of air that evolves into a bubble
size distribution, which ranges in size from tens of micrometres to centimetres. Deane
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Cases Domain sizes (m) Mesh grid densities Mesh grid resolutions (m) Processors
x× z× y x× z× y

L1 0.10× 0.08× 0.02 1024× 500× 200 1x'1z=1y= 10−4 1024
L1W 0.10× 0.08× 0.04 1024× 500× 400 1x'1z=1y= 10−4 2048
L2 0.20× 0.08× 0.04 2048× 600× 400 1x'1z=1y= 10−4 8192

TABLE 3. Numerical configurations used in the present work. The numerical domains
are one wavelength long and the scale effects are discussed in § 3.5, with wavelength
increasing from 0.10 to 0.20 m. The effect of the width of the numerical domain is also
discussed by widening the configuration L1 to L1W.

Cases Mesh grid densities Mesh grid resolutions (m) Processors
x× z× y

Coarse grid (CG) 256× 125× 50 1x'1z=1y= 4× 10−4 8
Intermediate grid (IG) 512× 250× 100 1x'1z=1y= 2× 10−4 256
Reference grid (RG) 1024× 500× 200 1x'1z=1y= 10−4 1024
Finer grid (FG) 2048× 1000× 400 1x'1z=1y= 0.5× 10−4 8192

TABLE 4. Mesh grid densities used in the present work with the L1 configuration, from
1.28 to 0.819 billion mesh grid points.

& Stokes (2002) studied the bubble distribution and the fragmentation process of the
air cavity entrapped by breaking waves, from the jet impact to the collapse of the
main air cavity. They showed that bubbles larger than 1 mm were subjected to
fragmentation, whereas smaller bubbles were stabilised by surface tension forces and
did not fragment. In order to be able to simulate air inclusions down to 1 mm size,
we have to consider a mesh grid resolution of the order of 10−4 m (L1 configuration
detailed in table 3), keeping in mind that this is still not sufficient. In order to keep a
reasonable time for the computations, we have to reduce the wavelength to L= 0.1 m.
Numerical tests are shown in § 3.5 to evaluate the scale effects when increasing the
wavelength, considering the numerical configurations given in table 3.

We further mainly detail the process of vortex filament generation and describe the
plunging breaking wave simulated with H/L=0.13 and d/L=0.13. In order to discuss
the capacity of the numerical tool to describe accurately such fine details, we also
present in § 3.5 a mesh grid analysis using four different mesh grid resolutions ranging
from 4× 10−4 to 0.5× 10−4 m, the latter requiring almost a billion mesh grid points.
The number of processors used to perform this numerical analysis is given in table 4.

3. The mechanism of vortex filament generation
3.1. Preliminary analysis

As it approaches the beach, the propagating wave changes form, owing to the
decrease in water depth, and its shape loses its symmetrical aspect. Once the front
face of the wave steepens and becomes almost vertical, a jet of water is projected
forwards from the crest of the wave. When the tongue of water free-falls forwards
into a characteristic overturning motion, following a nearly ballistic trajectory, a
tube of air is enveloped, generating a first large-scale aerated vortex. This pocket
of air is entrapped and rotates at speed due to the high circulation flow of water
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surrounding it. The plunging jet closes over the air when it finally hits the wave face
at the plunge point. The jet re-enters the water after impact, forcing up a second jet,
called splash-up. This splash-up can rise higher than the original wave.

In rare documentary footage and in pictures showing breaking waves filmed from
underwater, we identified some spinning aerated filaments under the impact zone.
When analysing the existing films and pictures, some characteristic features of these
well-defined hollow vortex filaments, also referred to as ‘coils’ by casual observers,
could be detected. The fine coherent structures were fully 3D vortical tubes, like
vortex filaments elongated in the main flow direction. The filaments were seen to
occur only under plunging breaking waves, connecting the splash-up and the main
tube of air. The generation mechanism and evolution of the vortex filaments is
obviously a localised process remaining very close to the impact zone, and thus
clearly seemed independent of water depth. We observed that these vortex filaments
initiated when the tip of the jet touched the forward face of the wave. The filaments
were then stretched from one end, following the rising splash-up, while the other end
was wrapped around the main aerated cavity. The vortex filaments were observed to
entrain large quantities of air funnelling inside the structures. The rotating structures
appeared to start as large vortex tubes thinning with time and at times collapsing in
bubbly filaments, while some of the detected structures could be very thin from the
beginning. The vortex filaments often seemed to be regularly distributed and evenly
spaced along the spanwise direction, while we found the downstream extremities of
some vortex filaments to interact with each other and form larger vortex filaments.
Sometimes, we had the chance to see some vortex filaments coiling, braiding or
interlacing aesthetically. Even if no length nor time scales could be estimated from
the existing materials, it was obvious that a large range of sizes and durations could
be noticed. Nevertheless, the lifespan of the filament was closely linked to that of the
main tube of air generated by the plunging crest of the wave. No preferred direction
of rotation could also be identified. Some of the vortices were seen spinning in the
same direction, while some neighbouring filaments rotated in the opposite direction.

It was not clear from the pictures and film footage what the exact mechanisms
responsible for the generation and evolution of the vortex filaments were. We could
see the aerated filaments, but both extremities were often not visible owing to the
chaotic motion of the flow in this highly aerated region, which was obscured by
bubbly clouds. To date, very few experimental observations have been made in
laboratories detailing these structures, though one photograph was found after we
finished writing this article (figure 2). Some experimental works were also found to
have been able to reproduce these vortex filaments, such as figure 3.11 of Lamarre
(1993), figure 2(b) of Rojas & Loewen (2010) and figure 3(a) of Blenkinsopp &
Chaplin (2011).

It is interesting to note that the vortices only appeared once in such detail (BBC
2009), despite filming more than 10 waves in Pohnpei (Micronesia) in April 2008
(Huw Cordey, personal communication). So how and where does it all start? What
happens to the filaments clearly needs to be further investigated using high-resolution
numerical simulations. An early citation of the BBC video can be found in Brucker
et al. (2010), but no analysis was provided. Plunging breaking waves were numerically
simulated to deduce the mechanisms responsible for the triggering of the swirling
motion at the plunge point, their evolution and interactions, and the induced air
entrainment.
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FIGURE 2. Plunging breaking wave generated in the M2C Caen wave flume, revealing
some tiny aerated vortex filaments. The black-and-white rule visible in the bottom right
corner gives an idea of the dimensions (the large rectangles are 5 cm long and the small
rectangles are 1 cm long). Picture used with kind permission of Dr Dominique Mouazé,
University of Caen.

3.2. Generation of the vortex filaments
Unless otherwise indicated, all length, time and velocity scales herein are normalised
by the wavelength, L, and characteristic time scale,

√
g/L, respectively.

Usually, the most appropriate way to identify a vortex is to plot the instantaneous
streamlines or vorticity contours. However, when the flow patterns are very
complicated, vorticity contours alone cannot provide clear information. Thus, we
choose to identify and trace the motions of vortex filaments and their evolutions in
space and time using the Q-criterion, introduced by Hunt, Wray & Moin (1988) for
coherent structure eduction, where Q is the second invariant of the velocity gradient
tensor (Jeong & Hussain 1995). The Q-criterion is defined as the balance between
the rotation and strain rates. Having identified the aerated vortex filaments under the
impact zone, it is expected that coherent hydrodynamical structures coincide with
these areas. The distribution of positive values of the Q-criterion isolate areas where
the strength of rotation overcomes the strain, thus identifying the location, direction
and shape of the vortices. In figure 3, the vortex filaments are visualised under
some plunging breaking waves. Two weak plungers are shown in figure 3(a,b). The
overturning jets entrap a smaller tube of air, compared to stronger plunging breaking
waves (figure 3c–f ). The lifespan of this aerated cavity is very short, as it appears to
dislocate very rapidly in both cases. So, no vortex filament is observed, rather bubble
plumes rotating in a large horizontal bore.

Table 5 summarises the number of vortex filaments that we observe from our
simulations, as a function of the breaker type. Two breaking waves are identified
as weak plunging breakers, which could be the limit between the plunging breaker
and the spilling breaker. A small jet is still clearly visible from the crest of the
breaking wave and impacts on the very upper part of the face of the wave. A spilling
breaking wave involves a much more complex combination of wave propagation
and vorticity generation based on perturbations appearing on the steepening face of
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 3. Examples of vortex filaments generated for some of the 3D breaking waves
simulated in this paper (L1 configurations). (a,b) Two weak plunging breakers where
no vortex filament is observed: (a) H/L= 0.10, d/L= 0.17; (b) H/L= 0.11, d/L= 0.20.
(c–f ) Plunging breakers where vortex filaments occur: (c) H/L= 0.10, d/L= 0.10;
(d) H/L= 0.11, d/L= 0.13; (e) H/L= 0.12, d/L= 0.17; ( f ) H/L= 0.13, d/L= 0.20.

the wave (Duncan et al. 1999). We consider that the grid refinement we use is not
sufficient enough to be able to capture the mechanisms responsible for the generation
of a ‘pure’ spilling breaking wave and surface tension is neglected in our simulations.
It can be clearly deduced from table 5 that the vortex filaments are not a function
of the breaker intensity. For a given dispersion parameter d/L, the breaker intensity
increases with the steepness of the wave H/L. The most intense breakers are found
at low dispersion parameter values and the steepest waves. One of the simulated
waves (H/L = 0.08 and d/L = 0.10) shows fewer vortex filaments. This less intense
plunging breaker required a finer mesh grid density (FG) to display vortex filaments.

Many investigators (e.g. Kiger & Duncan 2012) analysed in detail the splash-up
generation and plunging jet re-entry in the forward face of the wave. It was shown
that the jet does not penetrate, regardless of the position of the plunge point or the
angle between the falling crest and the front face of the wave. It was also numerically
confirmed that the jet of water was almost totally reflected when it hit the front face
of the breaking wave (Abadie 1998; Yasuda et al. 1999; Dalrymple & Rogers 2006;
Lubin et al. 2006; Landrini et al. 2007). Strong shear is generated due to the falling
jet, moving forwards and downwards, impacting and entering the forward face of
the wave, moving backwards and slightly upwards (figure 4a). The tongue of water
first hits the front face of the breaking wave and creates a notch. From this point,
the tongue of water separates, as the two adverse flows of water meet. One part of
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d/L H/L Breaker type Number of vortex filaments

0.10
0.08 PL 3/19 a

0.10 PL 18
0.12 PL 13

0.13
0.09 PL 15
0.11 PL 16
0.13 PL 15

0.17
0.10 WP 0
0.12 PL 15
0.14 PL 13

0.20
0.11 WP 0
0.13 PL 14
0.15 PL 13

TABLE 5. Counts of vortex filaments observed as a function of the breaker type: WP, weak
plunging; PL, plunging breaker.
a Using the RG grid, only three vortex filaments can be observed, while using the FG grid,
more structures can be identified.

(a) (b)

FIGURE 4. (a) Sketch of the free-falling jet showing the adverse flows at the plunge point,
prior to the impact. (b) Sketch of the colliding jet with the flow separation: downstream
of the plunge point, the main tube of air is entrapped, while the splash-up is growing
upstream. The arrows represent the opposing flows meeting and separating, creating a line
of discontinuity.

the liquid forms the upper part of the splash-up, while the other goes backwards
around the main pocket of entrapped air where a considerable topologically induced
circulation takes place (Iafrati 2011). Therefore, as sketched in figure 4(b), a line of
discontinuity is found in the velocity field where the two opposing flows meet. This
was discussed in detail by Peregrine (1981), who tried to develop a simple model of
the flow after the plunging jet impact, and Watanabe et al. (2005).

The vortex filament generation is a very transient phenomenon, occurring in less
than a second. In figures 5 and 6 and supplementary movies 1 and 2 (available at
http://dx.doi.org/10.1017/jfm.2015.62), a time-lapse sequence details the appearance of
two vortex filaments.

The tip shape of the plunger is neither a straight line nor a sharp edge (see figure 7
of Watanabe et al. (2005) and figure 4a). It is commonly observed that the tongue of
water ejected from the wave crest stretches and its tip fragments into droplets as it
free-falls down, thereby exhibiting an irregular profile. When the jet of water collides

http://dx.doi.org/10.1017/jfm.2015.62
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(a) (b)

(c) (d )

FIGURE 5. Sequence of pictures presenting the evolution of two vortex filaments, from
the touchdown of the plunger to the beginning of the splash-up generation, for H/L= 0.13
and d/L= 0.13 (L2 configuration). The vortex filaments are isolated in a 3D strip
extracted from the whole numerical domain for a clearer identification of the structures.
The free surface is identified with the isocontour of the phase function C = 0.5 (in
blue). The isocontours of the axial vorticity are calculated in an axis x′ tilted 50◦ from
the horizontal axis x (ωx′ = 700 s−1 in red and ωx′ = −1000 s−1 in orange). The whole
generation process is also shown in supplementary movies 1 and 2.

with the wave face, the plunge location is not a thin line of contact but the tumultuous
impact of a mass of water (figure 5a). When the jet impinges on the face of the wave,
it eventually creates a line of craters upstream from the plunge point, at the toe of
the notch, which will further develop into the splash-up. The craters do not penetrate
deeply, but expand due to the adverse flow from the forward face. The craters are
deformed as they grow because of the increasing pressure between the colliding jet
and the face of the wave. We observe an upward and forward motion of the lateral
and upstream walls of the craters, while the bottoms move slightly backwards and
downwards (figure 6a) inclining the craters. Then, the craters begin to fold in on
themselves, so the lateral walls begin a slanted backward motion creating wrinkles,
initiating vorticity. The back of the plunging jet is observed to bend, so it now starts
to move upwards and forwards at some point of the free surface to eventually close
over the craters, creating cavities (figure 6b). The lateral and downstream walls join
together to entrap air. The walls of the craters are creased, with upward motion at the
edges and downward motion at the bottoms. The folding-in motion of the craters on
themselves is the seed of the vortical motion of the cavities.

Now, small aerated pockets are created. The obliqueness of these cavities is found to
be determined in the very early stages of the process (approximately 50◦ found from
all the simulated configurations). The notch at the impact creates an angle responsible
for the tilting of the nascent cavities (figure 5b). As the liquid in the jet clearly
separates, the splash projects forwards from the impact point. The upper parts of the
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(a)

(b)

(c)

FIGURE 6. Sequence of pictures presenting the evolution of two vortex filaments, from
the touchdown of the plunger to the beginning of the splash-up generation, for H/L= 0.13
and d/L= 0.13 (L2 configuration). The vortex filaments are isolated in a 3D strip
extracted from the whole numerical domain for a clearer identification of the structures.
The free surface is identified with the isocontour of the phase function C= 0.5 (in blue).
The line integral convolution, calculated in the 2D plane (xz), is displayed. The celerity
of the initial wave is subtracted from the longitudinal velocity component to be in a
frame of reference moving with the wave. The whole generation process is also shown in
supplementary movies 1 and 2.

aerated pockets are moving upwards, while the bottoms are pulled by the downdraught
created along the line of discontinuity. This is clearly displayed in figure 6(c), where
the streamlines delimit the saddle point. The vortex filaments appear from the cavities,
which are then elongated, undergoing a stretching and intensification process in the
strain region between the spanwise rotating tube of air and the developing splash-up
(figure 5b,c). The vortex filaments now develop into 3D streamwise coherent structures.
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The upstream ends remain attached to the generation points at the upper surface of
the splash-ups, while the downstream ends are connected to the main tube of air
(figure 5d).

The rotating structures are thus clearly identified as soon as the jet enters the
forward face of the wave. The vortex filaments are found to be located at the exact
boundary between the water from the impacting jet and the water from the forward
face of the wave, along the line of discontinuity in the strain region. During the
splash-up evolution phase, a regular pattern can be observed with the development
of the streamwise coherent vortices (figure 3). However, we do not identify any
preferred direction of rotation from our numerical results, as already mentioned in
the preliminary analysis. Indeed, at the early stage of the impact, vorticity is due to
the development of the craters, whose shapes are highly irregular. Moreover, once
the spiral motion of a developing filament has started in one direction, it tends to
entrain and merge with the surrounding air pockets and bubbles, and interact with
other neighbouring filaments. We could often see some structures combining to form
one larger filament.

The plunging jet has a rough aspect on its back and under its extremity due
to the small disturbances that grow during the fall (figure 5a). Some longitudinal
depressions are also observed on the back of the plunging jet, which correspond
to the scars investigated by Watanabe et al. (2005) and Saruwatari et al. (2009).
These local surface patterns are expected to be linked to the striations or the fingers
detailed respectively by Longuet-Higgins (1995) and Narayanaswamy & Dalrymple
(2002). The longitudinal distribution of the vortex filaments has been observed to
be correlated with the striations visualised on the back of the impinging jet, the
cavities being the main source of aeration of the vortex filaments when they first
appear. The scars then lead to the formation of some bumps on the back of the
plunging jet (figure 5b,c), which is an early stage of disintegration of the free-falling
jet (Longuet-Higgins 1995). These bumps hit the water surface and cause some more
pockets of air to be carried underwater and towards some vortex that is in formation
(figure 5d). When entrained in the water, these new pockets of air are flattened by
the impact and are gradually stretched as they approach the line of discontinuity.

Figures 5(d) and 6(c) show that the upstream end of the vortex, or its ‘mouth’, is
opened at the extremity of the developing splash-up. The downstream end is stretched,
entrained towards the horizontal tube of air and wraps around it.

3.3. Comparison with shear flows
Some discussion should be provided about similar vortical structures encountered
in shear flows. Some longitudinal vortices exist between 2D von Kármán vortices
generated in the wake of a circular cylinder (Williamson 1996; Wu et al. 1996;
Henderson 1997). A saddle point is induced by the stretching of two counter-rotating
spanwise vortices, responsible for the occurrence of 3D vortex loops, similar to those
found in a mixing layer.

What we find under breaking waves is very similar to the 3D streamwise vortices
in a plane shear layer, as described by many authors (Neu 1984; Bernal & Roshko
1986; Lasheras, Cho & Maxworthy 1986; Ashurst & Meiburg 1988; Lasheras &
Choi 1988; Fritts, Isler & Andreassen 1994; Andreassen et al. 1998; Fritts, Arendt
& Andreassen 1998). In a shear layer flow, the primary KH instability develops first,
leading to the formation of an almost 2D array of spanwise vortex tubes, whose
axes are perpendicular to the streamwise direction. The streamwise vortex structure
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has been proved, experimentally and numerically, to originate from an internal
instability of the primary vortices. Then, in addition to the primary KH instability,
a secondary instability appears. Owing to the strain field created between the evolving
spanwise vortices, the perturbation grows as it is stretched, resulting in the formation
of well-organised smaller vortex tubes whose axes are aligned with the principal
direction of the positive strain field. The large spanwise rolls are connected to each
other by the streamwise filaments (Neu 1984; Fritts et al. 1994). Andreassen et al.
(1998) and Fritts et al. (1998) presented an analysis of the vorticity dynamics for
a breaking internal gravity wave, based on a 3D high-resolution numerical model.
Initial convective instability generates a series of intertwined vortex loops, linking
continuously to the spanwise vortices due to stretch and intensification. Lasheras et al.
(1986), Lasheras & Choi (1988) proved that the plane turbulent shear layer is also
composed of a secondary streamwise, coherent vortical structure, which superimposes
onto a primary spanwise one.

Some differences can be highlighted between the vortex filaments observed under
the breaking waves and the streamwise structures found in shear layer flows. In the
latter case, the streamwise vortices are found to arise from a secondary instability
between formed spanwise vortices. Then, the streamwise vortical structures are
always observed first to form in the braids between the spanwise vortices and then
to propagate into their cores (Lasheras et al. 1986). In our case, the triggering
mechanism driving the transition to a 3D flow slightly differs. Each filament is
individually generated from the plunge point, owing to the rotation of a cavity
entrapped between the free-falling jet and the forward face of the wave. Then, the
structure develops into a vortex filament through a stretch and intensification process
in the strain region located between the main aerated cavity and the developing
splash-up, analogous to what is observed in shear layer flows. We do not notice
loops, or bending, or counter-rotating vortices. The extremities of the vortex filaments
have been seen to be connected: one end is attached to the main tube of air and
wraps around it, and the other end is opened at the free surface, at the upper part of
the splash-up. Moreover, aeration of the vortex cores make the filaments hollow.

Our vortex filaments thus also differ from the vortex loops mentioned by Watanabe
et al. (2005). Their results detail the formation of streamwise vortices occurring
several times between consecutive co-rotating vortices generated by a sequence of
splash-ups. Watanabe et al. (2005) assumed that the mechanisms responsible for the
formation of the vortex loops are analogous to those described in KH instability. A
continuous spanwise vortex sheet is identified at the plunge point and an instability
in the saddle region leads to a rapid growth of spanwise perturbations. The vortex
sheet is then stretched, and extremities are bent, forming the continuous streamwise
counter-rotating vortices. This may be due to the coarse mesh grid resolution or
to some assumptions made by Watanabe et al. (2005), such as single-phase flow
simulations (no aeration taken into account) without strong surface distortions. We
also simulated a single breaking event in a periodic domain, while Watanabe et al.
(2005) simulated regular waves breaking one after another. So, each wave interacts
with the remaining vorticity left by the previous breaking wave, which affects the
overall vorticity field.

3.4. Temporal and spatial evolution of the vortex filaments
In this section, some quantitative descriptions and general trends are presented. The
average diameter of the vortex filaments is not easy to determine, as it depends
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0.00153

0.00514

FIGURE 7. (a) The average diameter of the vortex filaments is 0.00153 m, while, for
comparison, (b) the average diameter of the main aerated pocket of air is 0.00514 m. The
vortex envelopes are visualised with Q = 1 isosurfaces (in green) and the free surface
is identified with the isocontour of the phase function C = 0.5 (in blue). The wave is
breaking from the left to the right (H/L= 0.13 and d/L= 0.13, L2 configuration).

on the threshold used to define the vortex core. Whether we should measure the
size of the air entrapped in the core of the filaments or the envelope for a given
Q-criterion isocontour is not an easy question. We show in figure 7 the measurement
of an average vortex filament at a given time, which is 0.00153 m based on the
Q-criterion isocontour used to visualise the vortex filaments. The average diameter
of the aerated core is one-third to one-quarter of the vortex diameter, which is
approximately 4× 10−4 m. For comparison, we also give the average diameter of the
main air pocket entrapped by the impinging jet when the wave breaks (0.00514 m).
The azimuthal velocity is approximately 0.3 m s−1 for the large air pocket, while
we find an azimuthal velocity of 0.275 m s−1 for the vortex filament, the velocities
being measured at the locations shown in figure 7.

Figure 8 depicts the distribution of the vortex filaments in the flow, at t = 0.17 s
and t= 0.24 s. The main concern, when using the Q-criterion alone, is obviously the
setting of the threshold. To investigate the dynamics of the coherent structures in more
detail, the vortex filaments are shown in figure 8 using a rather loose criterion Q= 1
combined with the free-surface topography, the streamlines and some scalar quantities,
as they evolve in space and time. If higher Q-criterion values are used, only few
details disappear in the regions where the water flow is associated with weak local
velocity fluctuations, while the vortex filaments remain distinctly delineated, indicating
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a strong vortical motion. Further discussion of coherent structures is therefore based
on the use of Q= 1.

The structures are observed to be persistent in time; they do not disappear nor do
new ones appear as the wave breaks. A regular distribution of the vortex filaments can
be seen in figure 8, with structures that are clearly distinct from adjacent ones and
well organised. The fine elongated structures form a rib cage, linking the splash-up
to the main pocket of air. Air entrainment does indeed coincide with the coherent
structures educed from the Q-criterion (figure 8a), as it is drained inside the vortex
filaments. The size of the filaments are observed to be linked to the size of the pockets
of air entrapped at the beginning of the process (see supplementary movies 1 and 2).

It is evident from figure 8(b) that the vortex filaments are low-pressure regions.
Once the vortex core forms, air is entrained and the pressure inside the filaments
becomes lower than the value of the surrounding fluid. This is in accordance with the
general observation that pressure has relatively low values in the centre of a region
of strong rotational fluid motion. It can be mentioned that the pressure criterion
corresponds with the Q-criterion for each aerated vortex tube. The Q-criterion that is
chosen in the present study shares some properties with both the vorticity and the
pressure criterion.

Evidence of the spiralling flow around the envelopes of the vortices is clearly shown
in figure 8(c). The streamlines detail the swirling motion and the discontinuity, as the
adverse upstream and downstream flows meet at impact. Figures 8(d) and 9 confirm
the observations that the vortices exhibit no preferred direction for the swirling motion
nor any specific alternating pattern.

Figure 10 details how the adverse flows meet and wrap around the vortex filaments,
rotating from the mouth towards the interior of the wave.

The downstream ends of the vortex filaments are observed to be connected with the
main tube of air. They are sometimes deformed and flattened, and often noticed to
experience complicated entanglements. It has also been seen that the vortex filaments
could be aerated as long as the mouth was still opened at the free surface. Some
filaments have been observed to be gradually emptied of air, but the hydrodynamic
coherent structures persisted in the flow and could sometimes suck air inside the core
again, like a bathtub vortex. The numerical results presented in this paper can be easily
compared to the underwater pictures shown in figure 1 and match all the observations
detailed in § 3.1.

3.5. Scale effects and mesh grid sensitivity
Owing to the fact that all the previous analysis and description relies upon numerical
results, some points should be addressed concerning the assumptions and choices
made about wavelength, omission of surface tension and mesh grid resolutions.

Considering the smallest wavelength in our work (L1), our results could be affected
by the absence of surface tension, which could have prevented the generation
of the vortex filaments during the plunging jet impact. However, most recent
studies neglected air entrainment and surface tension (Christensen & Deigaard 2001;
Watanabe et al. 2005; Christensen 2006; Landrini et al. 2007; Saruwatari et al. 2009),
and were limited to 2D numerical configurations (Iafrati 2009, 2011) or coarse 3D
resolutions owing to the large numerical domains (Christensen & Deigaard 2001;
Lakehal & Liovic 2011; Higuera, Lara & Losada 2013). In the present study, the
mesh grid resolution is chosen to describe fine inclusions larger than 1 mm, to identify
the main mechanisms involved in the generation of vortex filaments and to describe
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FIGURE 8. Evolution of the coherent vortical structures underneath the plunging breaking
wave at t= 0.17 s (left column) and t= 0.24 s (right column), for H/L= 0.13 and d/L=
0.13 (L1 configuration). The coherent vortex filaments are educed using the Q-criterion
(Hunt et al. 1988). The vortex envelopes are visualised with the positive Q= 1 isosurfaces
(in green). (a) The free surface is identified with the isocontour of the phase function (in
blue), showing the air entrainment. (b) The pressure isocontour (p= 0.7 N m−2, with the
reference p= 0 located at the free surface) illustrates the low pressure inside the vortex
filaments. (c) Streamlines show spiralling flow around and inside the fine elongated vortex
filaments. (d) The colour scale on the isosurfaces of Q= 1 refers to the local value of the
spanwise velocity. Regions associated with positive spanwise velocity are in red, negative
in blue. The whole dynamic is also shown for the free surface in supplementary movie 3.
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FIGURE 9. Picture showing the axial vorticity to indicate the orientations of the rotating
motions of the vortex filaments. The vortex envelopes are visualised with the positive
Q = 1 isosurfaces (in green), and coloured with the isocontours of the axial vorticity
(ωx′ = 400 s−1 in red and ωx′ =−400 s−1 in blue). Here H/L= 0.13 and d/L= 0.13; L1
configuration.

qualitatively their evolution in the flow. But running 3D numerical simulations at
such a length scale, considering surface tension, is still a challenge. Indeed, several
mesh grid points are necessary to compute precisely the free-surface curvature used
to model surface tension. So considering the smallest inclusions encountered in our
numerical simulations, taking surface tension into account, would lead to inaccurate
behaviour and spurious velocities, even with almost one billion mesh grid points.

Deane & Stokes (2002), considering experimental waves with a much larger
wavelength (L = 2.3 m) than ours, showed that bubbles larger than the Hinze scale
(1 mm radius) are subject to fragmentation by turbulent and sheared flow, whereas
bubbles smaller than the Hinze scale are maintained by surface tension. So, at a
scale smaller than the Hinze scale, where surface tension is large enough to prevent
breaking up, the interfacial energy is balanced by the turbulent kinetic energy of the
flow. Subsequently, the fragmentation process ceases.

Brochini & Peregrine (2001) indicated that, at the shortest scales, the stabilising
actions of gravity and surface tension dominate over the disrupting effect of turbulence.
Song & Sirviente (2004) also proved numerically the increasing role of surface
tension, associated with a significant reduction in jet intensity and air entrapment.
But using a wavelength L = 0.27 m, Iafrati (2009) noticed that, owing to the high
Weber number of his numerical simulations, the surface tension contribution to the
energy balance was found to be negligible, as also mentioned by Chen et al. (1999).
Iafrati (2009) evaluated the energy associated with surface tension effects being less
than 0.2 % of the initial energy content in his configuration (Re= 104, We= 100).

To evaluate the influence of the omission of surface tension, we show two
configurations with doubled wavelengths from 0.1 to 0.2 m. We evaluate the Reynolds
numbers of the initial waves, considering the initial quantities, and the Weber number
as if surface tension was taken into account (Rew and Wew), but assuming the effect
of surface tension would be negligible. When we modify the initial wavelength and
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(a)
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FIGURE 10. Streamlines detail spiralling around an aerated vortex filament: (a) close-up
of figure 8(c) showing the intricate motion of the streamlines; (b) schematic depicting the
swirling motion resulting from the impingement of the mass of water coming from the
plunging jet (left) and the forward face of the wave (right) to form the vortex filament.
The splitting of the bodies of water delimits a line of separation and creates the stretching
of the filament.

thus increase the numerical domain, the initial water depth and the initial wave
height vary according to the wave steepness H/L and dispersion parameter d/L
to achieve geometrical similarity. We do not satisfy kinematic similarity, as the
Reynolds numbers are not constant. As Battjes (1988) mentioned, the process of
wave steepening, overturning and jet formation is essentially an irrotational motion.
Even at the instant when the free-falling jet touches down on the lower face of the
wave and forms a cavity, the motion is still irrotational (Battjes 1988). So the flow
is expected to be driven by the Reynolds number only when the jet impingement
induces the transition to strong rotational motions and turbulence is generated.

Gomez-Ledesma, Kiger & Duncan (2011) presented an experimental study on
the impact of a translating 2D transient jet on an initially quiescent liquid pool,
mimicking a plunging breaker situation. The Reynolds numbers ranged between 6520
and 9754, whereas the Weber numbers considered were between 2.1 and 4.6. Some
large volumes of air were shown to be entrained and a great number of bubbles
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Initial wave Plunging jet
Cases cw (m s−1) Rew Wew tj (m) wj (m s−1) Rej Wej

L1W 0.324 99 000 36 2× 10−3 0.55 1100 8
L2 0.459 280 000 72 4× 10−3 0.99 3966 52

TABLE 6. Initial and computed characteristics of the plunging breaking waves with the
initial values of H/L = 0.13 and d/L = 0.13, depending on the initial wavelength (left
columns). The initial wave celerity cw, Reynolds number Rew = ρwg1/2L3/2/µw and Weber
number Wew = g1/2L(ρw/σ)

1/2 (as if surface tension were taken into account) are given.
The simulated heights at breaking Hb, plunging jet thicknesses tj before impacting the front
face of the wave, the vertical velocities of the tips of the jets before impact wj, and the
Reynolds number Rej= ρwwjtj/µw and Weber number of the plunging jets Wej= ρww2

j tj/σ ,
with surface tension of water taken at σ = 0.075 N m−1, are shown in the right columns.

were generated, owing to the collapse of the large air cavities. The jets were shown
to penetrate into the pool, producing clouds of bubbles, entrained downstream and
eventually observed to rise under the influence of buoyancy. Gomez-Ledesma et al.
(2011) indicated that higher translation speeds would have generated non-penetrating
jet impacts, allowing the creation of larger upstream splash-ups as in a plunging
breaker (Kiger & Duncan 2012). We also considered the same Reynolds number
(Rej) with respect to the subsequent plunging jet about to impact the forward face of
the wave, leading to the generation of vortex filaments.

As presented in table 6, the Reynolds number of the plunging jet can be considered
to be sufficiently large to assume that the process of air entrainment and vortex
filament generation at the impact can be correctly described if surface tension is
neglected in the L2 configuration. Looking at the two configurations, we checked that
our results for the free-falling jets are in accordance with the approximation given by
Drazen, Melville & Lenain (2008) for the vertical velocity of the toe at impact on
the surface (wj = (2gh)1/2, with h defined as the height of the breaking region).

Figure 11 presents a qualitative comparison of the vortex generation obtained
from the two numerical configurations presented in table 6. It can be clearly seen
that approximately the same number of filaments is generated, their distribution and
spacing along the spanwise direction being roughly the same. So, using the L2
configuration as a reference and assuming that surface tension can be neglected for
this configuration, we can conclude that the configuration L1 with shorter wavelength
is satisfactory compared to L2. If we can assume that surface tension would not
have prevented the generation of the vortex filaments, we can however presume that
surface tension would have prevented the fragmentation process of the aerated vortex
filaments in both configurations.

Keeping the width of the numerical domain constant and decreasing the initial
wavelength from L2 to L1W does not affect the generation of vortex filaments, as
observed in figure 11. To define the length scale, we then choose to focus attention on
the Reynolds number. The study referred to a very large length scale (L3), at which
surface tension is actually negligible. But in order to have a mesh grid resolution
sufficient to describe correctly viscous and turbulent effects, the Reynolds number
cannot be too high and this is why the fundamental wavelength is set to 10 cm.
Moreover, in order to reduce the computational time, we thus choose to reduce the
wavelength and neglect surface tension, so we can educe the formation of the vortex
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FIGURE 11. Pictures showing the vortex filaments simulated with increasing initial
wavelength from (a) to (b), for H/L = 0.13 and d/L = 0.13. The vortex envelopes are
visualised with the positive Q= 1 isosurfaces (in green) and the free surface is identified
with the isocontour of the phase function C= 0.5 (in blue), showing the air entrainment.

filaments with small-scale prototypical plunging breaking waves for different breaking
intensities.

In order to verify the effect of the width of the numerical domain, we divide it by
two from L1W to L1, as given in table 3. The pictures shown in figure 12 indicate
that we approximately double the number of vortex filaments when doubling the width
of the numerical domain. According to these comparisons, we can conclude that the
mechanisms responsible for the vortex filaments are not a function of the wavelength,
or of the width of the numerical domain.

A question arose when looking at previous work dedicated to exactly the same
configuration (Lubin et al. 2006), where vortex filaments have never been observed.
So, we also performed a mesh grid sensitivity, considering four mesh grid densities
(table 2). To assess the convergence of our numerical results with grid resolution, we
present in figure 13 a comparison of our simulations at a given time. This numerical
test confirmed that the vortex filaments could not be seen by Lubin et al. (2006),
considering the mesh grid density 1x'1z=1y=4×10−4 m (CG grid). As expected,
much less detail can be seen for air entrainment, and no vortex filaments are detected.
The splash-up is much thicker and is projected much further as a long tongue of
water. Fewer droplets are ejected in the air, the flow in the gas medium thus being
less turbulent. Increasing the number of mesh grid points, to reduce the mesh grid
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FIGURE 12. Pictures showing the vortex filaments simulated with decreasing initial width
of the numerical domain, from (a) to (b), for H/L = 0.13 and d/L = 0.13. The vortex
envelopes are visualised with the positive Q= 1 isosurfaces (in green) and the free surface
is identified with the isocontour of the phase function C= 0.5 (in blue), showing the air
entrainment.

density to 1x'1z=1y= 2× 10−4 m (IG grid), did not allow a better description
of the vortex filaments. Nevertheless, the splash-up is simulated with more details
than previously, and is projected less far. Then, the finest mesh grid density (FG grid)
allowed a better description of the aeration inside the vortex filaments. The structures
are more clearly separated from each other and aeration has been observed to last
longer in the core of the filaments, owing to a more accurate free-surface description.
However, approximately the same number of filaments can be found when compared
to the RG grid results. However, one case has been found to be sensitive to the mesh
grid refinement, as identified in table 5.

The interesting result of the CG and IG grids is the resulting flow, which is mainly
2D with two large spanwise vortical structures separated by a strain region, similarly
to co-rotating vortices in a mixing layer. We do not observe any streamwise vortices
or braids, as could be expected from what has been described concerning shear flows.
So the numerical simulations do not capture any secondary hydrodynamic instability
that could lead to the formation of well-organised streamwise counter-rotating vortices
(Lasheras et al. 1986) or vortex loops (Watanabe et al. 2005). The coarse grids used
by Watanabe et al. (2005) should thus not be responsible for the differences observed
between our observations.

3.6. Influence of the vortex filaments on the total energy dissipation
The total wave energy dissipation process is now investigated. According to (3.1), the
dimensional kinetic, potential and total energies are

Ek = 1
2

∫∫
ρu2 dx dy,

Ep =
∫∫

ρz dx dy,

Et = Ek + Ep.

 (3.1)

The integrations are carried out over the whole domain, in the liquid part, with the
bottom z= 0 m as the reference level for the calculation of the potential energy. We
also define zero potential energy corresponding to a non-perturbed surface, and we
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FIGURE 13. Convergence study for four different mesh grid resolutions ((a) CG, coarse;
(b) IG, intermediate; (c) RG, reference; (d) FG, fine (see table 4)) in the L1 configuration,
with H/L = 0.13 and d/L = 0.13. The vortex envelopes are visualised with the positive
Q= 1 isosurfaces (in green) and the free surface is identified with the isocontour of the
phase function (in blue).

normalise the values of the energies by the respective initial values (Chen et al. 1999;
Lubin et al. 2006; Iafrati 2009) and the time by the initial wave period. In figure 14,
we plot the time evolution of the total energy of the wave, normalised by its initial
value, for the case where H/L= 0.13 and d/L= 0.13.

Rapp & Melville (1990) measured the turbulence generated by fully unsteady
breaking waves in the laboratory. They found that approximately 90 % of the energy
lost from the waves was dissipated within four wave periods, and that subsequently
the kinetic energy decayed as t−1. Lamarre & Melville (1991) showed experimentally
that the work done against buoyancy in entraining air could account for up to 50 % of
the energy lost from the wave field. These results would suggest that air entrainment
is a highly dissipative process and should therefore be taken into account when
simulating or modelling breaking waves. Melville, Veron & White (2002) also proved
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FIGURE 14. Time evolution of the total energy (non-dimensional quantities t/T versus
Et(t)/Et(0)) for H/L= 0.13 and d/L= 0.13.

that the turbulent kinetic energy decays with a t−1 dependence for three types of
breaker (spilling, weak plunging and plunging breakers), later confirmed by Drazen
et al. (2008).

These experimental findings were successfully compared to some numerical works
(Chen et al. 1999; Lubin et al. 2006; Iafrati 2009; Lakehal & Liovic 2011). While
Chen et al. (1999) and Iafrati (2009) simulated 2D breaking, including splash-up and
air entrainment following the impact of the plunging jet, they found that 80 % of the
pre-breaking wave energy was dissipated within three wave periods after breaking. It
subsequently decayed as t−1, which is consistent with the experimental measurements.
Unfortunately, Watanabe et al. (2005) did not evaluate the dissipation energy, so no
comparison is possible. Lubin et al. (2006) showed a comparison between the time
histories of the energy obtained by 2D and 3D calculations. Even if it was shown
that 3D turbulence enhances energy dissipation, surprisingly, the differences between
the 2D and 3D results were minor (<5 % up to a half-wave period after the breaking
event). Two-and-a-half periods after the breaking event, the difference in the energy
contents of the 2D and 3D simulations was found to be 10 %.

In the example displayed in figure 14, we can see that our detailed 3D simulation is
in accordance with the previous findings. The same t−1 decay rate is also found. The
most surprising feature is the similar total energy dissipation found for both CG and
RG grids. Indeed, the two curves plotted in figure 15 match almost perfectly. Focusing
on the vortex filaments described in this article, this would mean that the structures
have no influence on the dissipation energy of the breaking wave. A coarse grid is
sufficient to describe the largest eddies in the flow and to account for the correct
decay rate of the total energy of the wave. The small size of the vortex filaments
compared to the largest aerated cavities should be borne in mind (figure 7). This
is also supported by the time histories drawn in figure 16, where we compare the
total energy dissipation for different breaker intensities. It can be clearly seen that all
the curves exhibit the same decay rate, even for the weak plunging case where no
vortex filaments were observed (H/L= 0.10, d/L= 0.17). This is in accordance with
the results presented by Melville et al. (2002), who found the same decay rate of the
energy dissipation for the three breaker types.
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FIGURE 15. Comparison of the time evolutions of the total energy (non-dimensional
quantities t/T versus Et(t)/Et(0)), for the coarse (grey; red online) and reference
(black line) grids. A zoom is shown to differentiate the two curves, which are almost
superimposed. Here H/L= 0.13 and d/L= 0.13.

1 2 3

Time

0.50

0.75

1.00

T
ot

al
 e

ne
rg

y

FIGURE 16. Comparison of the time evolutions of the total energy (non-dimensional
quantities t/T versus Et(t)/Et(0)): solid line, H/L= 0.14, d/L= 0.17; +, H/L= 0.10,
d/L= 0.17; A, H/L= 0.09, d/L= 0.13; @, H/L= 0.11, d/L= 0.13; E, H/L= 0.12,
d/L= 0.10; ∗, H/L= 0.08, d/L= 0.10.

4. Conclusions
The scope of this paper is to highlight the existence of unusual vortical structures

under breaking waves and investigate the mechanisms of their generation. The
Q-criterion has been an effective way of visualising the aerated vortex filaments
while preserving the physical details. Several breaker intensities have been simulated
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to confirm the conditions of occurrence of the vortex filaments, their generation and
their development.

The vortex filaments under breaking waves are detected to be individual streamwise
vortical structures, undergoing a stretch and intensification process in the strain region
between the spanwise tube of air entrapped by the impinging jet and the developing
splash-up. The impacting jet generates craters, which will eventually fold in on
themselves to create cavities. These pockets of air have been noticed to start rotating
while their lateral and downstream walls come together to close the oblique cavities.
The upper parts of the pockets are moving upwards and forwards, due to the splashing,
while the bottoms are pulled backwards and downwards. The streamwise structures
are then elongated, due to the shear in the saddle region.

The streamwise vortex filaments have been detected under plunging breaking waves
only, with an upstream obliqueness of approximately 50◦. They have been shown to be
independent of the breaker intensity. Their lateral distribution at generation seemed
to be driven by the striations found on the back of the plunging jet. The total
energy dissipation for different breaker intensities has been evaluated. We found no
contribution due to the presence of the vortex filaments on the dissipation process.

Discussion about existing analogous streamwise vortical structures has been
provided. The main difference is that we identified and explained how these vortex
filaments were individually generated in the chaotic impact of a mass of water. The
structures are observed to be aerated, as their mouth is attached to the free surface
while the other end is linked to the main tube of air. We did not notice any bending
at their extremities, nor continuous linking to neighbouring filaments to form loops
(Watanabe et al. 2005; Saruwatari et al. 2009). The common point is the shear
region in the saddle point, responsible for the stretch and intensification process of
the filaments.

We explained that our choice of a short wavelength was governed by computational
arguments, and we caution the reader about extrapolating our analysis to larger waves.
Surface tension has been neglected in this work, so great care should be taken about
the evolution of the air entrainment and the energy dissipation due to these fine
structures. It has also to be remembered that capillary waves on short gravity waves
could generate additional vorticity on the surface and thus cause another type of
wave breaking (Longuet-Higgins 1992). Capillary waves could also be responsible for
some instabilities of the aerated vortex filaments and then lead to the early bursting
of the structures.

Moreover, regular waves should be studied in future work. We simulated a single
breaking event in a periodic domain, while Watanabe et al. (2005) simulated regular
waves breaking one after another. So, we have to evaluate how each wave would
interact with the remaining vorticity left by the previous breaking wave. The overall
vorticity field should be more complex. For this reason, we also limited our discussion
to the generation of vortex filaments and chose not to develop their interactions after
wrapping around the main spanwise tube of air. No turbulent quantities have been
estimated because the numerical configuration consists of a single breaker, so no
mean velocity has been calculated to access the fluctuating quantities. An average
velocity along the transverse axis could have been computed, but we did not consider
this as equivalent to the time-averaged or phase-averaged velocity that we want to
compute in the future when we will consider regular waves breaking one after the
other. For this reason, we do not provide any discussion about any turbulent process
or estimations (small-scale turbulence generation, turbulent dissipation, turbulent
kinetic energy, etc.). Only instantaneous quantities are presented and discussed in this
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paper. Future work will be dedicated to address the generation of the other types of
3D structures encountered under breaking waves (obliquely descending eddies and
downbursts). The generation of the striations on the back of the plunging jet is also
a subject of future interest.
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