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An implicit method for the Navier–Stokes equations on
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SUMMARY

This paper deals with a method first introduced by Romé et al. in two articles. The authors reported that
their method was suitable to run the Navier–Stokes equations efficiently on non-matching and overlapping
block-structured meshes. However, there was a problem of mass conservation and a discontinuity of
pressure through the interfaces in some cases. In the present paper, an improvement of the method based
on a pressure correction scheme is proposed. With this improvement, the pressure is continuous through
the interfaces and the incompressibility constraint is ensured over the whole domain. Several numerical
tests were carried out to assess the proposed method. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In computational fluid dynamics when flows are calculated for complex geometries, one can
either use a block-structured grid or an unstructured one. Unstructured grids allow very complex
geometries to be meshed leading to complex discretization schemes and solvers that require tables
of connectivity between nodes and indirect addressing. If the geometry is not too complicated,
it can be divided into a reasonable number of structured blocks. Lexical numbering facilitates
the discretization of the equations (specially if the grid remains orthogonal) and the use of many
solvers dedicated to the structured grids.
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Domain decomposition methods are well suited to these issues. They can be classified
according to several criteria [1]. For instance, the block-structured grids can be overlapping
or non-overlapping. Generally, each block is computed separately and provides the boundary
conditions for the neighbouring blocks. Historically, these methods have been introduced by
Schwarz [2]. The main drawback of the method is that overlapping is required for convergence.
An improvement consists in substituting overlapping by another boundary condition. In [3],
Lions proposed the use of a Robin boundary condition. Our strategy consists in working with
overlapping in order to deal with orthogonal grids. The main difficulty is to find a relevant
projection operator on the interfaces between sub-domains. Mortar element methods have been
proposed to solve this problem [4, 5]. Chimera methods represent another approach [6, 7]. These
methods are particularly used in aerodynamic simulations.

Non-matching meshes raise the classical question of interpolation. This difficulty becomes harder
when the interpolation has to be carried out under constraint. In the case of simulation of an incom-
pressible flow, the constraint ∇ ·u=0 must be verified. Generally, interpolation is conservative if
it is based on finite volume techniques [8, 9]. Fluxes through interfaces are calculated using local
balance with a neighbouring block or a projection. Recently, a mass-flux-based interpolation algo-
rithm was proposed by Tang et al. [10, 11]. Some authors who used non-conservative interpolation
have shown that mass conservation is directly linked to the order of the interpolation [12].

In this paper, we propose an implicit method to compute the incompressible Navier–Stokes
equations on block-structured meshes based on non-conservative interpolation. This study proposes
an improvement of the method first introduced in [13, 14]. Indeed, the authors previously met
problems to satisfy the incompressibility constraint on the interfaces between blocks leading in
some cases to a discontinuity of pressure. They used the augmented Lagrangian method [15]
for pressure–velocity coupling. In the present case, the method has been replaced by a pressure
correction scheme [16] to circumvent these drawbacks.

We first present the numerical context of the study by describing the models and numerical
methods of the CFD code Aquilon (Aq. in figures and tables). Then, we describe the novelties
of the method in comparison with the method first introduced in [13, 14]. Finally, numerical tests
were carried out to validate the method and clearly show the improvements.

2. NUMERICAL CONTEXT

2.1. Numerical methods

In this paper, the incompressible Navier–Stokes equations are considered:
Find the velocity u and the pressure p such that:

∇ ·u=0 in � (1)

�

(
�u
�t

+∇ ·(u⊗u)

)
=−∇ p+∇ ·�(∇u+∇ tu) in � (2)

u=0 on �� (3)

where � is the density of the fluid, � is the dynamic viscosity and �⊂R2 is a bounded open
domain with Lipschitzian border ��.
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786 E. AHUSBORDE AND S. GLOCKNER

The main difficulty in the resolution of the problem (1)–(3) consists in ensuring the incom-
pressibility constraint that couples the velocity and the pressure. In the previous study [14], the
augmented Lagrangian method [15] was dealt with. In the present study, we will focus on a
pressure correction scheme [16].

2.1.1. The pressure correction scheme. The pressure correction time integration scheme consists in
splitting the Navier–Stokes system into two stages, a velocity prediction and a pressure correction
[16]. The time interval [0,T ] is divided into N equidistant time steps of length �t=T/N . The
approximate velocity and pressure fields at time tn =n�t (n=0, . . . ,N ) are denoted un and pn ,
respectively. Assuming all quantities are known up to tn , the solution at tn+1 results from the
velocity prediction step:

Find un+1∗ such that:

�

(
un+1∗ −un

�t
+∇ ·(un+1∗ ⊗un)−un+1∗ ∇ ·un

)
=−∇ pn+∇ ·�(∇un+1∗ +∇ tun+1∗ ) in � (4)

un+1∗ =0 on �� (5)

followed by the pressure correction step:
Find un+1 and �n+1 such that:

�
un+1−un+1∗

�t
+∇�n+1=0 in � (6)

∇ ·un+1=0 in � (7)

un+1 ·n=0 on �� (8)

with:

�n+1= pn+1− pn+�∇ ·un+1∗ (9)

Considering � constant and taking the divergence of (6) gives:

��n+1= �

�t
∇ ·un+1∗ in � (10)

��

�n

n+1

=0 on �� (11)

Once �n+1 is computed, the divergence-free velocity and the pressure are obtained by:

un+1=un+1∗ − �t

�
∇�n+1 (12)

pn+1=�n+1+ pn−�∇ ·un+1∗ (13)

2.1.2. Spatial discretization. The spatial discretization is based on the finite volume method on
a velocity–pressure staggered grid of the Marker and Cells type [17]. Pressure unknowns are
associated with the cell vertices, whereas velocity components are face centred. A centred scheme
of order 2 is used in this study for the inertial and constraint terms.
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The multifrontal sparse direct solver MUMPS [18] is used to solve the linear systems stem-
ming from the velocity prediction and pressure correction steps. BiCGStab(2) coupled with ILUT
preconditioner was also successfully tested.

3. AN IMPLICIT METHOD FOR CONNECTING BLOCKS

In order to connect the sub-domain, the missing information is transferred from block to block.
Polynomial interpolations are built and integrated as special boundary conditions. The polynomial
coefficients of the interpolation are present in the linear system and couple the solution on each
block through the interface. The non-conservative interpolation of the variables at the interfaces
can be seen as a new implicit boundary condition used for the discretization of the equation at the
nodes strictly inside the different blocks.

3.1. Pressure correction step

Two blocks (a) and (b) are considered (see Figure 1). The pressure increment � defined on block
(b) is interpolated, which gives the new boundary conditions on block (a). Interpolation is based
on the construction of a polynomial basis of a given order. For instance, the interpolation of � at
point M0(x0, y0) belonging to block (a) is obtained from the values of � at points Mi (xi , yi ) on
block (b) by the relation:

�(a)(x0, y0)= fint(�
(b))=

N∑
i=1

Fi (x0, y0)�
(b)(xi , yi ) (14)

The interpolation must now be constructed locally to each node at the interface. The technique
consists in building a canonical basis of Q-type of order d , thanks to the neighbourhood of
M0(x0, y0). The number of nodes required depends on the order of the chosen polynomial. For
instance, for a Q(1) interpolation Figure 1 represents the interpolation of the pressure on node M0
belonging to the interface of block (a) obtained from the values of pressure on nodes M1,M2,M3
and M4 belonging to block (b).

M
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u

u u

v
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(a)
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Figure 1. Interpolation of the pressure.
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788 E. AHUSBORDE AND S. GLOCKNER

In order to reduce the values of the coefficients of the polynomial, M0 is chosen as the centre
of the frame. A polynomial Q(d)

i built using the Mi nodes, 1�i�(d+1)2 is written:

Q(d)
i (x−x0, y− y0)=

d∑
m=0

d∑
n=0

amn i (x−x0)
m(y− y0)

n (15)

Q(d)
i has the following properties:

∀i, j 1�i, j�(d+1)2, Q(d)
i (x j −x0, y j − y0)=�i j (16)

Equation (15) associated with the property (16) can be seen as a line of the (d+1)2×(d+1)2

linear system A×B= I d with:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a001 · · · amn 1 · · · ad d 1

...
...

...

a00 i · · · amn i · · · ad d i

...
...

...

a00(d+1)2 · · · amn (d+1)2 · · · ad d (d+1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1−x0)
0(y1− y0)

0 · · · (xi −x0)
0(yi − y0)

0 · · · (x(d+1)2 −x0)
0(y(d+1)2 − y0)

0

...
...

...

(x1−x0)
m(y1− y0)

n · · · (xi −x0)
m(yi − y0)

n · · · (x(d+1)2 −x0)
m(y(d+1)2 − y0)

n

...
...

...

(x1−x0)
d(y1− y0)

d · · · (xi −x0)
d(yi − y0)

d · · · (x(d+1)2 −x0)
d(y(d+1)2 − y0)

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The inversion of this linear system (one for each node of the interface) is performed during the
preparation step of a simulation and provides the values of the matrix A. The value of the pressure
� at node M0(x0, y0) reads:

�(a)(x0, y0)=
(d+1)2∑
i=1

Q(d)
i (x0, y0)�

(b)(xi , yi ) (17)

The Q(d)
i can be placed in the linear system of the pressure correction step (see Figure 2).

Thus, on a matrix line corresponding to a node at the interface, non-zero elements are the diagonal
term and the elements with a column number corresponding to unknowns used to interpolate the
pressure.

With this method, the pressure is obviously continuous at the interfaces (up to the order of the
polynomial interpolation), but the divergence of the velocity is not null at the interfaces since the
velocities u2, u4, v1, v2 and v3 (see Figure 1) are not corrected by the pressure correction. Indeed,

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:784–801
DOI: 10.1002/fld



BLOCK-STRUCTURED GRIDS 789

Figure 2. Representation of the pressure correction matrix on 2 blocks.
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Figure 3. New stencil to ensure incompressibility constraint.

the pressure gradient cannot be well computed on these nodes and introduces an error in Equation
(12). In order to circumvent this problem, we propose to increase the overlap between blocks by
adding a row of ghost nodes (nodes �1, �2 and �3 in Figure 3). The pressure is now connected
from one block to another, thanks to these ghost nodes. The pressure gradient can be computed
precisely on velocity nodes at the interfaces. This addition satisfies incompressibility constraint.
Nonetheless, the pressure is no longer continuous at the interface. This is probably due to the error
in the interpolation of �n+1 on the ghost nodes that accumulates on the pressure nodes pn+1 at
the interface. In order to overcome this problem, a new pressure correction scheme is proposed.
The velocity prediction step does not change, but the pressure correction step is modified and a
third interpolation step is added. The new scheme reads as follows:

• Velocity prediction step: Find un+1∗ such that

�

(
un+1∗ −un

�t
+∇ ·(un+1∗ ⊗un)−un+1∗ ∇ ·un

)
=−∇ pn+∇ ·�(∇un+1∗ +∇ tun+1∗ ) in � (18)

un+1∗ =0 on �� (19)
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790 E. AHUSBORDE AND S. GLOCKNER

• Pressure correction step: Find un+1 and �n+1 such that

�
un+1−un+1∗

�t
+∇�n+1=0 in � (20)

∇ ·un+1=0 in � (21)

un+1 ·n=0 on �� (22)

with:

�n+1= p̃n+1− pn+�∇ ·un+1∗ (23)

• Interpolation step: Compute pn+1 such that

pn+1= p̃n+1 in �/� (24)

pn+1= fint( p̃
n+1) on � (25)

where � is the whole interface between blocks and fint represents the interpolation function
on �.

This new scheme ensures continuity of the pressure through the interfaces and still respects the
incompressibility constraint.

3.2. Velocity prediction step

Interpolation of the velocity is more difficult since it is a vector field. If the blocks do not have
the same orientation, both velocity components are needed to compute a single component of the
velocity field on the interface. For a precise description of the method, particularly the interpolation
technique on cartesian blocks with any orientation or on curvilinear blocks, the reader is referred to
[14]. Previously, the interpolation of the normal component of the velocity field at the interface was
performed on pressure nodes, whereas the tangential component was interpolated at the velocity
nodes. In the present case, both components are interpolated at the velocity nodes (see Figure 4
in case of a Q(1) interpolation).

(a)

(b)

Figure 4. New interpolation of the velocity vector on a staggered grid.
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In the next section, many computations have been carried out to assess the proposed method
and to exhibit its improvements in comparison with [14]. Q(2) polynomial interpolation has been
systematically used. This leads to a 5-point stencil for pressure and to a 24-point stencil for velocity.

4. NUMERICAL RESULTS

In this section, a series of numerical experiments was performed to evaluate the accuracy and the
efficiency of the method. The test cases considered include steady and unsteady flows. First, we
consider a Poiseuille flow and the Green–Taylor vortex example to verify the spatial and time order
of convergence of the method. Then, the lid-driven cavity is studied to assess the improvement
of the method in comparison with [14]. Finally, flows past a two-dimensional obstacle and past a
triangular cylinder are considered.

4.1. Poiseuille flow

Simulations were carried out in several non-conforming block-structured meshes represented in
Figure 5. The Reynolds number is Re=100. At the inlet, we impose a parabolic profile for the axial
velocity u and zero for the velocity v, whereas at the outlet, a Neumann condition is imposed on
both velocity components. Since the analytical solution is order 2, the errors are close to computer
accuracy if a Q(2) interpolation is used.

4.2. Green–Taylor vortex

The main point of interest with this flow is that, unlike in Poiseuille flow, the inertial term is not
null. The Green–Taylor vortex is modified to obtain a stationary solution not identically null [19].
In [14], the authors could not validate the pressure because the divergence of the velocity was not
null and accumulated in the pressure. We will see that the new scheme proposed clearly improves
these inconveniences.

The momentum equations are enriched by the following source term:

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �2�

2H2
cos

( � x

2H

)
sin

( � y

2H

)

− �2�

2H2
sin

( � x

2H

)
cos

( � y

2H

)

16 2

82

82
8216 2 16 2 16 2

18
2

18
2

32x8 35x9

80x8

30x8

30x8
30x25

Case 1 Case 2 Case 3 Case 4 Case 5

Figure 5. Representation of the different blocks for Poiseuille flow study (number of elements is indicated).
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Figure 6. Block-structured mesh for the Green–Taylor flow study.

The solution is:

u(x, y, t)=−cos
( �x

2H

)
sin

( �y

2H

)
(1−e−�2�t/2H2

)

v(x, y, t)=+sin
( �x

2H

)
cos

( �y

2H

)
(1−e−�2�t/2H2

)

p(x, y, t)=−�

2

(
cos2

( �x

2H

)
+cos2

( �y

2H

))
(1−2e−�2�t/2H2 +e−�2�t/H2

)

The boundary conditions are obtained directly from the analytical solution and are modified at
each time step. The test case was run with two non-conforming structured blocks (see Figure 6).

A time convergence study was carried out. Figure 7 represents the errors at time T =1s as a
function of the time step �t . We observe a slope in log/log scale equal to 1 that is coherent with
the order of the scheme used (Euler time scheme and linearization at order 1).

4.3. Lid-driven cavity

The lid-driven cavity problem has long been used as a test or validation case for new codes or
new methods. The standard case is fluid contained in a square domain with three wall sides and
one moving side (with velocity tangential to the side). In the present paper, we refer to the works
of Botella and Peyret [20]. For this computation, a Reynolds number of 1000 is used.

The mesh is divided into five non-conforming structured blocks: the first block occupies the
main part of the domain; the lower (upper) blocks have step spaces a third (half) the size of
the main block (see Figure 8). The mesh is refined in the corners to have a better description of the
flow. The refinement is clearly a strong point of the multiblock strategy. The number of elements
is 121 344.
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Figure 7. L2(�) error norm as a function of the time step for the Green–Taylor flow study.
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Figure 8. Streamlines on an block-structured mesh for the lid-driven cavity.

The main results found in the literature are given on the intensity and position of the vortices.
The results are obtained with convergence criteria on stationarity below 10−12. Our results are
compared with the results obtained in [14] to exhibit the improvements of the method.

4.3.1. Position and intensity of the vortex. Tables I–III that represent the position of the vortices
and the intensity of the streamlines show the good behaviour of the method in comparison with
the results of the literature. We can observe in the two first lines of the table that both methods
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Table I. Intensity and position (x, y) of the main vortex.

Reference Mesh size Maximum streamline x y

Present 121344�3482 0.11885 0.4687 0.5664
Romé et al. [14] 121344�3482 0.11877 0.4687 0.5664
Botella and Peyret [20] 1282 0.11894 0.4692 0.5652

Table II. Intensity and position (x, y) of the left secondary vortex.

Reference Mesh size Minimum streamline x y

Present 121344�3482 −1.7285×10−3 0.1354 0.1119
Romé et al. [14] 121344�3482 −1.7285×10−3 0.1354 0.1120
Botella and Peyret [20] 1282 −1.7297×10−3 0.1360 0.1118

Table III. Intensity and position (x, y) of the left ternary vortex.

Reference Mesh size Maximum streamline x y

Present 121344�3482 4.6742×10−8 0.00757 0.00755
Romé et al. [14] 121344�3482 4.7314×10−8 0.00781 0.00781
Botella and Peyret [20] 1282 5.0399×10−8 0.00768 0.00765

give very close results. The utility of the refinement is clear since it provides an amplitude of 10−8

for the right ternary vortex.

4.3.2. Velocity and pressure profiles. In Figure 9, the velocity profiles present a good accordance
with those obtained by Botella and Peyret [20] and from a monoblock mesh with a Chebyshev
polynomial step size variation. In [14], the authors observed that the pressure was discontinuous
on the interface of the upper blocks because the incompressibility constraint did not equal zero.
Figure 10 clearly shows the improvement of the method since the pressure is now continuous.

4.4. Laminar flow over a two-dimensional obstacle

The experimental configuration is presented in Figure 11. This flow was experimentally studied
by Carvalho et al. [21]. The Reynolds number based on the height of the obstacle and mean
axial velocity is 82.5. A recirculation appears behind the obstacle and when the Reynolds number
increases, a second recirculation appears on the upper wall (see Figure 12). The boundary conditions
at the inlet are prescribed as a parabolic profile for the axial velocity u and zero for the velocity v.
At the outlet, a Neumann condition is imposed on both velocity components. In the present study,
a mesh composed of three structured blocks is considered. Even if this configuration can be treated
with an uniformly refined grid, we have chosen this test case to prove the robustness of our
approach by putting the interface between blocks in a strong shear zone. Indeed, for complex
flows and geometries, the fact that vortices cross the interface is very frequent. The grid is fine
around the obstacle and stretched near the inlet and the outlet (see Figure 12). The total number
of elements is 131 040.
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Figure 11. Global features of the flow over a two-dimensional obstacle.

Figure 13 presents the axial velocity u at different locations x/S measured [21] and computed.
Table IV compares the reattachment lengths. Satisfactory results can be observed in comparison
with the experimental data except for the reattachment length x2/S. Several authors [22–24] have
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Figure 12. Streamlines on a block-structured mesh for the flow over a two-dimensional obstacle.
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Figure 13. Comparison between calculation (—) and experimental data [21] (◦)
for flow over the fence (Re=82.5).

Table IV. Comparison of the reattachment lengths.

x1/S x2/S x3/S

Present 4.96 4.12 8.38
Aq. monoblock 1800×200 4.99 4.01 9.19
Carvalho et al. [21] 5.00 2.01 10.4

considered this flow to validate their scheme but they have only compared the axial velocity u at
different locations x/S and none of them has measured the recirculation lengths. Consequently, we
cannot really verify if the difference on x2/S comes from our computation or from the measurement
in [21]. At least, multiblock results are coherent (see Table IV) with those obtained on a fine
monoblock grid, solved with a different velocity–pressure coupling (augmented lagrangian).

4.5. Flow past a triangular cylinder

Flow past a equilateral triangular cylinder was studied. The Reynolds number is based on the side
of the triangular cylinder (h=1) and the axial velocity inlet (u=0.5). We focussed on two flow
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ranges according to the value of the Reynolds number in relation to its critical value Rec:

• Re<Rec: the flow is stationary. Two steady symmetrical vortices can be observed behind the
cylinder: their size increases with increasing Re.

• Re�Rec: the flow becomes unsteady and periodic. Two vortices form at the rear-end vertices
of the cylinder and are shed alternately.

Jackson [25] studied the onset of vortex shedding in flow past variously shaped bodies. For an
isosceles triangle with base 1 and height 0.8, he reported a critical Reynolds as 34.318 and a
corresponding Strouhal number as 0.13554. Zielinska and Wesfreid [26] computed flow past an
equilateral triangle with a blockage ratio equal to 1

15 and found a critical Reynolds number of 38.3.
De and Dalal [27] carried out a similar study and calculated a critical Reynolds number of 39.9 for
a blockage ratio of 1

20 . This case was chosen here because most studies have dealt with flow past
circular or square cylinders and laminar flow past a triangular cylinder has not been intensively
studied so far. Moreover, this configuration is well adapted to validate and illustrate the utility of
block-structured meshes.

4.5.1. Parameters of the case test. Figure 14 represents the block-structured mesh used in this
case. The grid is fine around the cylinder and space step size increases in front of and behind
it. The number of grid nodes distributed over a side of the cylinder is 100. The total number of
elements is 137 980. At the inlet, a flat profile is imposed for the axial velocity u and zero for the
velocity v. At the outlet, a Neumann condition is imposed on both velocity components. We will
compare the results with [27].

4.5.2. Steady flow. The streamlines in the vicinity of the cylinder for two Reynolds numbers are
shown in Figure 15.

To assess the method, the recirculation length (L r) defined by the reattachment of the fluid was
measured and a linear relationship between L r and Re obtained in [27] (see Figure 16). The results
seem to be in good accordance with those presented in [27].
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Figure 14. Block-structured mesh for flow past a triangular cylinder.
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Figure 15. Steady-state streamlines Re=20 (left), Re=35 (right).
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Figure 16. L r−Re relationship.

Table V. Comparison of the results for Re=100.

CD CDp CLrms St

Present 1.6698 1.3579 0.2626 0.1960
De and Dalal [27] 1.7549 1.2986 0.2974 0.1962

4.5.3. Unsteady and periodic flow. The flow becomes unsteady and periodic for Re�40. For
Re=100, the time-average drag coefficient (CD), time-average pressure drag coefficient (CDp ),
rms of the lift coefficient (CLrms) and the Strouhal number (St) are compared with [27]. We can
see in Table V difference below 5% except for the CLrms where the gap is 11%. It can be explained

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:784–801
DOI: 10.1002/fld



BLOCK-STRUCTURED GRIDS 799

Figure 17. Streamlines for the flow past a triangular cylinder during a period at Re=100
(it reads from left to right and vertically).

by the difference of the mesh size and the numerical method used by the authors. We can notice
that ensuring the continuity of the pressure between blocks allowed us to compute the drag and
lift coefficients even if the contours of the geometry are described by several blocks (contrary to
the previous method where jumps of pressure between blocks were observed).

Finally, Figure 17 shows the streamlines around the triangular cylinder during a period at
Re=100 giving prominence to the periodicity of the flow.

5. CONCLUSION

In this paper, we have proposed an improvement of a method first introduced by Romé et al.
in [14]. Both methods deal with a domain decomposition technique for non-conforming and
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overlapping block-structured meshes. They are non-iterative and based on a implicit non-
conservative interpolation of the variables at the interfaces. The linear systems are modified in
comparison with those obtained on a monoblock mesh since lines are added to take into account
the connectivity between blocks.

The main difference between the two methods is the velocity–pressure coupling. In [14], the
authors dealt with this coupling by an augmented Lagrangian method. In some cases, the divergence
of the velocity at the interfaces between blocks was not null leading to a discontinuity for the
pressure. In the present study, velocity and pressure were coupled by a pressure correction scheme.
The divergence of velocity is now null over the whole domain and the discontinuity of pressure has
disappeared. In many cases, the gradient of the pressure is sufficient to carry on computations but
an accurate pressure is needed to compute physical parameters such as drag and lift coefficients
for example. Consequently, the proposal method improves this point. Several numerical tests were
carried out in order to validate the method. They clearly showed its feasibility and accuracy.
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19. Caltagirone JP, Breil J. Sur une méthode de projection vectorielle pour la résolution des équations de Navier–
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