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SUMMARY

In the present work, we describe an interface treatment of multiblock computation for the incompress-
ible Navier–Stokes equations discretized upon a �nite volume marker and cell (MAC) approach. The
connection between the di�erent blocks is based on velocity interpolation only. The originality of this
work is that the polynomial interpolation coe�cients are present in the �nal linear system and ensure
that the equations are globally resolved. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical di�culties are often encountered when treating complex geometries that are com-
mon in many industrial processes such as turbomachinery �ows or moulding simulations.
A common practice to treat such complex geometries is based on the adoption of a

monoblock grid and penalization of Navier–Stokes equations using for example the Brinkman
term −(�=K)V [1]. K is the permeability of the continuum that varies from zero (solid)
to in�nity (�uid). However, this technique can be used to describe simple geometries
(Figure 1(a)), but proves insu�cient for complex ones and can lead to an increase in com-
putation time due to additional nodes. Moreover, for complex geometries, one-block meshes
often lead to poor mesh quality and insu�cient resolution. Multiblock techniques make up for
these three drawbacks, owing to the division of the topology into subdomains that are meshed
independently. Each block is connected to its adjacent ones so that the entire domain can be
solved.
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Figure 1. Example of monoblock and multiblock grids: (a) monoblock grid; (b) multiblock grid
(matching blocks); and (c) multiblock grid (non-matching blocks).

A multiblock grid can be made up of matching and non-matching blocks. In the �rst case,
whatever the mesh line, it is continuous throughout the interfaces (see Figure 1(b)). In the
second case, as one follows a line, it can stop at the interface due to a discontinuity of the
mesh (see Figure 1(c)). It is interesting to observe that non-matching meshes are locally
structured but globally unstructured. In both cases, blocks can either overlap or not. The
interface of non-overlapping blocks is a line (or a surface in 3D), and a surface (or a volume
in 3D) for the overlapping case.
An interesting state of art on the multiblock theme is presented in Reference [2]. Most

authors use �nite element or �nite di�erence methods with an explicit resolution and use an
iterative process to solve the interface treatment, each block being computed separately. Many
related works refer to several factors that have an in�uence on the accuracy of the solution,
such as the order of polynomial interpolation, the grid resolution, and the conservative or
non-conservative behaviours [3–5]. Other authors [2, 6] work on �nite volume discretizations,
using a pressure-based method to compute Navier–Stokes and have studied the coupling of
the pressure between blocks.
The goal of the present work is to propose an easy and original technique of coupling

between blocks. This will be done within the scope of the CFD code Aquilon [7–12], based
on a MAC orthogonal curvilinear structured grid. An implicit �nite volume method is used,
with a centred scheme for the spatial discretization. In order to deal with the pressure=velocity
coupling and the divergence-free velocity, we use the augmented Lagrangian method [13]. The
incompressibility constraint has been introduced in the momentum equations thanks to the term
−r∇(∇:u), the pressure components being considered as Lagrange multipliers. An iterative
Uzawa algorithm solves the augmented Lagrangian problem and gives the pressure explicitly
by

pn+1 =pn − r∇:un+1 (1)

So, for the multiblock treatment, nothing must be done on pressure.

2. PROPOSED METHOD

If we consider �rst the multiblock matching problem, the idea of the present method is to
delete for each twin node one of them, and then to reconstruct the incomplete stencil of
the remaining nodes (see Figure 2(a) for 1D problem). Thanks to the indirect addressing,
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Figure 2. 1D treatment of connection between two blocks: (a) matching blocks;
and (b) non-matching blocks.
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Figure 3. Representation of the ‘spider’ mesh.

this method is straightforward and the results should be identical to those obtained with a
monoblock grid with obstacle penalization.
Tests have been performed on a series of academic cases such as Poiseuille �ow, backward-

facing step �ow, driven cavities, etc. Industrial simulations have also been carried out and
results have been found to be identical to the monoblock ones. For example, in the case of
propellant �lling of solid propulsion boosters of Ariane 5 [9], the 3D grid includes 216 000
nodes if obstacles are meshed, and 180 668 if not. This corresponds to a saving of about 20
per cent in calculation time and memory.
For the multiblock non-matching grids, using the nodes of the adjacent blocks to complete

the stencil would result in a deformation of the cell and would not maintain the conservation
of the �uxes. In the present approach, for each cell at the interface between two blocks, a
new one is created, called a ghost cell (see Figure 2(b)). These nodes are not real nodes of
the discretization: the velocity will be calculated there by an implicit polynomial interpolation
using the values of the adjacent blocks. These ghost cells join a block to the adjacent one by
a kind of ‘spider’ mesh as shown in Figure 3 for a 2D representation.
As the computation of the junction of the blocks is implicit, the interpolation is present

in the linear system and modi�es the structure of the matrix. In 2D, the original matrix is
made up of two blocks (one for each component of the vector velocity), coupled by extra
diagonals coming from an augmented Lagrangian method. New unknown variables, ũ and ṽ,
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Figure 4. Schematic representation of the Navier–Stokes matrix with the additional blocks resulting
from the implicit interpolation.

corresponding to the ghost cells are included at the end of the matrix as a new horizontal
block that contains the interpolation polynomials (see Figure 4).
Polynomial interpolation is a widely known method to determine the value of a �eld �(x; y)

at a point M0(x0; y0), whatever its position on the grid (see Figure 3). The technique consists
of the construction of a subcanonical basis of Q-type polynomials of order k (k=1; 2; 3 in
the present study) thanks to the surrounding nodes of the point M0(x0; y0). The number of
nodes required depends on the order of the polynomial (for instance, Q2 requires 27 nodes
in 3D, and Q3, 64).
A polynomial Qk

i is associated with each necessary surrounding node Mi; 16i6(k + 1)2

in 2D:

Qk
i (x − x0; y − y0) =

k∑

m=0

k∑

n=0
am;n; i (x − x0)m (y − y0)n (2)

that has the following properties:

∀i; j; 16 i; j6(k + 1)2; Qk
i (xj − x0; yj − y0)= �ij (3)

A (k + 1)2 × (k + 1)2 linear system is built, Equation (3) being a line of the matrix. Its
inversion gives coe�cients am;n; i. A notable property is that the summation on m and n of
the coe�cients am;n; i is equal to one. The value of the �eld � at point M (x0; y0) is given by

�(x0; y0)=
(k+1) 2∑

i=0
Qk
i (0; 0)�(xi; yi) (4)

The inversion of the local linear system, for each ghost node, is performed once, during
the preparation of the computation, before the resolution time loop. The values Qk

i (0; 0) of
the di�erent polynomials go directly into the global linear system of the velocity vector (see
Figure 4).
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3. RESULTS AND PROSPECTS FOR NON-MATCHING GRIDS

First, we have analysed di�erent polynomial interpolation behaviours using several analytical
solutions: Couette and Poiseuille �ows, and a sheared vortex �eld.
The independence of the interpolation precision on the sharpness of the interpolation grid

has been veri�ed by interpolating the analytical solutions from a 16× 16 grid onto 32× 32,
64 × 64 and 128 × 128 grids. As expected, for a solution with the same order (or lower)
than the order of the interpolation polynomial, the observed error has been found around
the computer double precision. That means also that the Q1 polynomial should not be used
because of its incapacity to solve the Poiseuille �ow (error of 9.45D-4).
The opposite exercise has been then performed, that is to say, the passage from the analytical

solution on �ve grids (from 20×20 to 100×100), to a unique interpolation grid of 128×128.
For the vortex solution, that is the most interesting, the convergence order, on the velocity
�eld and the divergence error (see Table I), conforms to the theory (super convergence). It
can be noted that the divergence error decreases with the increase in the polynomial order.
For a code that is globally at a space precision of order two, the only interest to use Q3
interpolation would be to obtain an improvement of the divergence. Even though we have no
di�culties in the inversion of the Navier–Stokes linear system due to the added lines, it is
important to notice that to compute a component of the velocity vector at any point of the
domain, all components of the surrounding nodes are interpolated. So, a line of the matrix
can have up to 196 elements (in 3D with a Q3 interpolation).
Poiseuille �ow simulations using several multiblock grids represented in Figure 5 have been

performed. These �ve grids ensure that all types of non-conforming blocks have been tested,
from the case where half of the points conform (cases 1 and 2), to full non-conforming blocks
(case 5).
It has been observed that stationarity and residual parameters have reached computer

precision. Good results have been obtained for the maximal divergence and the maximal

Table I. Interpolation error and convergence order on velocity and divergence
for the sheared vortex solution.

Convergence order Convergence order
Error on u Error on div(u) for u for div(u)

Q1 1.61E-06 2.03E-05 2.004 1.773
Q2 2.30E-08 2.88E-09 3.006 2.840
Q3 3.35E-12 4.62E-11 4.015 3.830
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Figure 5. A schematic representation of the con�guration of the blocks; the number
of nodes by block is indicated.
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Figure 6. Streamlines of the backward-facing step �ow at Re=300.

error on the velocity �eld (from 3.7D-12 to 3.9D-14), whatever the grid and polynomial
choices.
The second test chosen is the laminar backward-facing step �ow. The domain has been

divided into three blocks, the middle one being three times �ner than the others. Figure 6
shows the main recirculation and the continuity of the �ow between the blocks. The length
of the recirculation at di�erent Reynolds numbers (Re=100, 200 and 300) is 2.92, 4.88 and
6.70, in agreement with the experimental results reported by Armaly [14] (2.86, 4.86 and
6.57). We have tested di�erent time and spatial steps, viscosities, densities, etc. and we have
not found any stability problem.

4. CONCLUSION AND PERSPECTIVES

An implicit non-matching multiblock coupling has been proposed for the solution of the
incompressible Navier–Stokes equations. Ghost cells are added at the interface between two
blocks. The velocity values at these nodes are calculated using a Q2 or Q3 polynomial
interpolation. The values of the polynomials at the ghost nodes are present in the �nal linear
system and assure the coupling between the adjacent blocks. First results are encouraging and
show the feasibility of this approach. Further research work should consider the e�ect of the
choice between Q2 and Q3 polynomials, on both velocity and divergence. It could also be
interesting to test P2 and P3 polynomials that have less cross terms. It has been observed
in the present study that divergence in the whole domain is controlled by divergence at the
interface. It should be interesting to improve the null divergence property of the interpolation.
Finally, the present method can be applied to other meshing techniques such as multigrid or
AMR which share part of their problematics with multiblock ones.
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