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In this paper we propose to study open boundary conditions for incompressible Navier–Stokes equations,
in the framework of velocity-correction methods. The standard way to enforce this type of boundary con-
dition is described, followed by an adaptation of the one we proposed in [36] that provides higher pres-
sure and velocity convergence rates in space and time for pressure-correction schemes. These two
methods are illustrated with a numerical test with both finite volume and spectral Legendre methods.
We conclude with three physical simulations: first with the flow over a backward-facing step, secondly,
we study, in a geometry where a bifurcation takes place, the influence of Reynolds number on the laminar
flow structure, and lastly, we verify the solution obtained for the unsteady flow around a square cylinder.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Efficiently reaching an accurate solution to the unsteady incom-
pressible Navier–Stokes equations is difficult for two main reasons.
Firstly, the treatment of non-linearities and secondly, the determi-
nation of the pressure field which will ensure a solenoidal velocity
field. From all the methods that address this second matter we can
sort them in two categories: exact and approximative methods. In
the first one, there are all the methods based on the idea proposed
by Uzawa et al. [3], like those in [10,16]. In complex geometries or
three-dimensional domains, this turns out to be inappropriate
since its computational time costs become very high. Augmented
Lagrangian is an iterative method described by Fortin and Glowinski
in [14]. With this method computing the exact solution is possible
but also very costly. Nevertheless an accurate approximation of the
solution can be obtained with a small number of iterations. This
leads to faster computations but without exactly respecting the
incompressibility constraint. The method of interest in this article
is one of an another class of non-exact methods which consists in
ll rights reserved.
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decoupling the pressure from the velocity by means of a time-split-
ting scheme. This scheme significantly reduces the computational
cost of an approximate solution satisfying the incompressibility
constraint but with a diminished accuracy.

Since this last class of methods is widely used, a large number of
theoretical and numerical works have been published that discuss
their accuracy and the stability properties. The state of the art from
both theoretical and numerical points of view is described in the
review paper of Guermond et al. [20]. The most widespread meth-
ods are pressure-correction schemes developed by Chorin, Temam,
Goda and later by Timmermans et al. [7,42,17,43]. They require the
solution of two sub-steps for each time step. The pressure is trea-
ted explicitly in the first step in order to predict a velocity. Then, by
projecting the velocity onto an ad hoc space, the solenoidal velocity
and the pressure are computed. The governing equation on the
pressure or the pressure increment is a Poisson equation derived
from the momentum equation by requiring incompressibility. A
less studied alternative method known as the velocity correction
scheme, developed by Orszag et al. in [33], Karniadakis et al. in
[25], Leriche and Labrosse in [26] and more recently by Guermond
and Shen in [21], consists in switching the two sub-steps. All these
time-splitting schemes have very similar numerical characteristics,
but, numerical evidence show that velocity-correction schemes are
more stable compared with pressure-correction schemes. This has
been reported with high-order time discretization in [25] and with
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Navier–Stokes equations in [11]. In the latter, the authors propose
an unconditionally stable scheme with an original implementation
of the inertial term.

The majority of the studies based on these methods consider
only the Dirichlet boundary condition. However, in many applica-
tions such as free surface problems and channel flows, one also has
to deal with an outlet boundary condition which should not dis-
turb upstream flow. A large variety of this kind of boundary condi-
tion exists [44,39]. Hereafter we will present some results on the
open or traction boundary condition which is efficient for low Rey-
nolds number and fluid–structure interactions [27,8,19]. This
boundary condition was successfully used to compute various
flows such as those around a circular cylinder, over a backward fac-
ing step and in a bifurcated tube [27]. Bruneau and Fabrie pro-
poses, in [6], an evolution of the traction boundary condition
involving inertial terms.

With open or traction boundary conditions, to our knowledge,
several questions remain open specially when a time splitting
method is considered. Indeed, while no studies have been reported
with a velocity-correction scheme, a few have been done with
pressure correction schemes. Guermond et al., have proven in
[20] that only convergence rates between one and 3/2 in space
and time for velocity and 1/2 in space and time for the pressure
are to be expected with the standard incremental scheme. Févrière
et al. in [13] combines the penalty and projection methods to offer
better error levels. In [36] we presented an almost second-order
accurate version of the boundary condition and pressure-
correction scheme. We expect to have the same results with
velocity-correction schemes as the two are very similar.

The aim of this paper is to study open boundary conditions
using the velocity-correction version of the time splitting methods
for the incompressible Navier–Stokes equations. In the first part of
this article we describe the governing equations, the velocity-
correction schemes and the boundary conditions. Since their
numerical properties are independent from the treatment of
linearities, we only consider in this part Stokes equations. The
usual way to enforce this type of boundary condition on the
pressure increment is described along with an improvement we
proposed in [36] that gives a satisfactory order of convergence
for both pressure and velocity. In a second section, we illustrate
numerically the behaviour of the standard methods and the
proposed method with a manufactured case with both a finite vol-
ume and a spectral Legendre method. Finally, in the last section,
we study three physical simulations. In the first, we study the flow
over a backward-facing step. In the second, we study the influence
of the Reynolds number on the laminar flow structure in a geom-
etry where a bifurcation takes place. In the third, we verify the
solution obtained for unsteady flow around a square cylinder.

First of all let us specify some notations. Let us consider a
Lipschitz domain X � IRd, (d = 2 or 3), the generic point of X is
denoted x. The classical Lebesgue space of square integrable
functions L2ðXÞ is endowed with the inner product:

ð/;wÞ ¼
Z

X
/ðxÞwðxÞ dx

and the norm:

kwkL2ðXÞ ¼
Z

X
jwðxÞj2dx

� �1
2

:

We break the time interval ½0; t�� into N subdivisions of length
Dt ¼ t�

N, called the time step, and define tn ¼ nDt, for any
n; 0 6 n 6 N. Let u0;u1; . . . ;uN be some sequence of functions in
E ¼ L2. We denote this sequence by uDt , and we define the follow-
ing discrete norm:
jjuDt jjl2ðEÞ ¼ Dt
XN

k¼0

jjukjj2E

 !1
2

ð1:1Þ

In practice the following error estimator can be used:

jjujj2Eðt�Þ ¼ jjuð�; t�ÞjjE ð1:2Þ

Finally, bold Latin letters like u,w, f, etc., indicate vector valued
quantities, while capitals (e.g. X, etc.) are functional sets involving
vector fields.

2. Governing equations

Let X be a regular bounded domain in IRd with n the unit nor-
mal to the boundary C ¼ @X oriented outward and s the associated
unit tangent vector. We assume that C is partitioned into two por-
tions CD and CN . Our study consists, for a given finite time interval
½0; t�� in computing velocity u = u(x, t) and pressure p = p(x, t) fields
satisfying:

q@tu� lDuþrp ¼ f in X��0; t�� ð2:3Þ
r � u ¼ 0 in X��0; t�� ð2:4Þ
u ¼ g on CD��0; t�� ð2:5Þ
lru� pIð Þ � n ¼ t on CN��0; t�� ð2:6Þ

where q and l are respectively the density and the dynamic viscos-
ity of the fluid and I the unit tensor. The body force f = f(x, t), the
constraint t = t(x, t) and the boundary condition g = g(x, t) are
known. For the sake of simplicity, we chose g = 0. Finally, the initial
state is characterized by a given u(�,0).

The boundary condition (2.6) is derived from the pseudo-stress
tensor ~r ¼ lru� pI. Considering the Cauchy stress tensor
r ¼ lðruþrT uÞ � pI, one can obtain an alternate traction bound-
ary condition containing the non-symmetrical part:

l ruþrT u
� �

� pI
� �

� n ¼ t on CN��0; t�� ð2:7Þ

As we consider the pseudo-stress tensor in (2.3) and later in
(2.16), we will only study here the first one for consistency (which
is comonly used, see for exemple [27,20]). Nevertheless, a similar
study was carried out with the stress tensor and, since the results
are very similar, they are not shown here.

2.1. Velocity-correction schemes for open boundary condition

We shall compute two sequences ð~unÞ06n6N and ðpnÞ06n6N in a
recurrent way that approximate in some sense the quantities
ðuð�; tnÞÞ06n6N and ðpð�; tnÞÞ06n6N , solutions of the unsteady Stokes
problem (2.3)–(2.6). The scheme developed by Guermond and
Shen (Eqs. (3.6)–(3.8) in [21]) consists of two sub-steps. The first
is the prediction problem that computes a pressure increment
and a solenoidal velocity: find unþ1 and unþ1 such that:

q
aunþ1 þ ðb�aÞ~un þ ðc� bÞ~un�1 � c~un�2

Dt
þrunþ1 ¼ f nþ1 � f n in X ð2:8Þ

r �unþ1 ¼ 0 in X ð2:9Þ
unþ1 �n¼ 0 on CD ð2:10Þ
l@nðunþ1 �nÞ � pnþ1 ¼ tnþ1 �n on CN ð2:11Þ

where u is the pressure increment defined as:

unþ1 ¼ pnþ1 � pn þ vlr � ~un ð2:12Þ

The parameter v is used to switch between the standard incremen-
tal scheme (v = 0) and the rotational one (v = 1) and parameters a,
b, c depend on the temporal scheme used. Namely:

� a = 1, b = �1, c = 0 for the first order Euler time scheme,
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� a ¼ 3
2 ; b ¼ �2; c ¼ 1

2 for the second order Backward Difference
Formula time scheme.

In practice, this step is processed by solving the following problem:
find unþ1 such that:

r� Dt
q
runþ1

� �

¼r� Dt
q

f nþ1� f n
� �

�ðb�aÞ~un�ðc�bÞ~un�1þc~un�2
� �

in X ð2:13Þ

@nunþ1¼ f nþ1� f n
� �

�n on CD ð2:14Þ
B:C:ðunþ1Þ on CN ð2:15Þ

and upgrading the pressure and the solenoidal velocity via (2.12)
and (2.8).

The second step is a correction-diffusion problem: find ~unþ1 such
that:

q
a~unþ1 þ b~un þ c~un�1

Dt
� lD~unþ1 ¼ f nþ1 �rpnþ1 in X ð2:16Þ

~unþ1 ¼ 0 on CD ð2:17Þ

l@nð~u � nÞnþ1 ¼ tnþ1 � nþ pnþ1 on CN ð2:18Þ

l@nð~u � sÞnþ1 ¼ tnþ1 � s on CN ð2:19Þ

We can note that the solenoidal velocity is the intermediate
velocity unþ1 and can be totally eliminated from the algorithm
while the viscous velocity ~unþ1 obtained at the end of the last step
does not satisfy the incompressibility constraint. The velocity-
correction scheme, with Dirichlet boundary condition only, has
been analyzed among others in [20], and is known to have second
order velocity convergence rate in time and, on the pressure
convergence rate, from 1 with the standard incremental scheme
to 3/2 with the rotational version.

As no numerical or theoretical analysis has been done else-
where in the literature with this projection method and boundary
condition, we are searching in this article for a correct definition of
B.C. unþ1Þ in (2.15). As usually done in the framework of pressure-
correction methods, the standard method consists in the ‘‘natural
choice’’ to consider unþ1 equals zero on CN . But, as we observe
hereafter, this leads to a kind of numerical locking for v = 0 since
the boundary condition on the pressure increment causes the pres-
sure on the limit to be equal to its initial value. With pressure-
correction methods, this problem is known and is usually circum-
vented by using the rotational incremental version which is also
efficient with velocity-correction methods, as our numerical tests
illustrate. In [36] we propose a new way to enforce this boundary
condition which does not suffer from such problems and which
improved the accuracy as it offers optimal convergence rates for
the standard incremental pressure-correction scheme while
remaining compatible with the rotational one. In the next section,
we present an adaptation of this alternative boundary condition
and we show afterwards that the same conclusions are to be
expected with the velocity-correction scheme.
2.2. Alternative open-boundary condition for the prediction step

In this section we develop the boundary condition on the pres-
sure increment induced by the Hodge-Helmholtz decomposition
(2.8). For the sake of simplicity we choose X to be a square and
we fix CN at its right boundary. The starting point of our approach
is the first component of Eq. (2.8). Taking the derivative with re-
spect to x1, one obtains:
a@x1 unþ1
x1
¼ @x1

Dt
q

f nþ1
x1
� f n

x1
� @x1u

nþ1
� �

� ðb� aÞ@x1
~un

x1

� ðc� bÞ@x1
~un�1

x1
þ c@x1

~un�2
x1

ð2:20Þ

Using boundary conditions (2.18) and (2.11) we get:

a
l
ðtnþ1

x1
þ pnþ1Þ ¼ @x1

Dt
q

f nþ1
x1
� f n

x1
� @x1u

nþ1
� �

� 1
l
ðb� aÞðtn

x1
þ pnÞ

�
þ c� bÞðtn�1

x1
þ pn�1Þ � cðtn�2

x1
þ pn�2Þ

� �
ð2:21Þ

By rearranging terms we obtain:

@x1

Dt
q
@x1u

nþ1
� �

¼ @x1

Dt
q

f nþ1
x1
� f n

x1

� �

� 1
l aðpnþ1�pnÞþbðpn�pn�1Þþcðpn�1�pn�2Þ
� �

� 1
l

aðtnþ1
x1
� tn

x1
Þþbðtn

x1
� tn�1

x1
Þþcðtn�1

x1
� tn�2

x1
Þ

� �
ð2:22Þ

The pressure is replaced with its increment thanks to Eq. (2.12):

@x1

Dt
q
@x1u

nþ1
� �

¼ @x1

Dt
q

f nþ1
x1
� f n

x1

� �
� 1

l
aðunþ1�vlr� ~unÞ
�

þbðun�vlr� ~un�1Þþcðun�1�vlr� ~un�2Þ
�

� 1
l

aðtnþ1
x1
� tn

x1
Þþbðtn

x1
� tn�1

x1
Þþcðtn�1

x1
� tn�2

x1
Þ

� �
ð2:23Þ

In order to simplify the expressions, we define the known quantity
Hnþ1:

Hnþ1 ¼ vr � a~un þ b~un�1 þ c~un�2
� �

� 1
l

bun þ cun�1
� �

� 1
l

aðtnþ1
x1
� tn

x1
Þ þ bðtn

x1
� tn�1

x1
Þ þ cðtn�1

x1
� tn�2

x1
Þ

� �
ð2:24Þ

The Eq. (2.23) can be rewritten as:

@x1

Dt
q
@x1 þ

a
l

� �
unþ1 ¼ @x1

Dt
q

f nþ1
x1
� f n

x1

� �
þ Hnþ1 ð2:25Þ

Subtracting (2.24) in (2.13) leads to a version that is easier to
implement:

@x2

Dt
q
@x2 �

a
l

� �
unþ1 ¼ @x2

Dt
q

f nþ1
x2
� f n

x2

� �
�r � ðb� aÞ~unð

þ c� bÞ~un�1 � c~un�2
� �

� Hnþ1 ð2:26Þ

One interesting thing in this version, is that it only involves the
tangential derivative of u which permits the boundary equation to
be uncoupled from the rest of the domain. Thus, it is possible to
solve this equation independently in a previous step, and use the
solution u� as a non-homogeneous Dirichlet boundary condition
during the prediction step.

To conclude this section, we explicit the full time-splitting algo-
rithm in the presence of open boundary conditions in a three
dimensional Cartesian domain. Denoting n; s1 and s2 respectively
the units normal to the boundary oriented outward and the two
associated tangent vectors, and s the units normal to @CN , we have:

Compute quantity Hnþ1:

Hnþ1 ¼ vr � a~un þ b~un�1 þ c~un�2� �
� 1

l
bun þ cun�1� �

� 1
l

aðtnþ1
n � tn

nÞ þ bðtn
n � tn�1

n Þ þ cðtn�1
n � tn�2

n Þ
� �

ð2:27Þ

Boundary condition step: find u� such that: (Eq. (2.29) comes from
Eq. (2.14))
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@s1

Dt
q
@s1 þ @s2

Dt
q
@s2 �

a
l

� �
u�

¼ @s1

Dt
q

f nþ1
s1
� f n

s1

� �
þ @s2

Dt
q

f nþ1
s2
� f n

s2

� �
�r � ðb� aÞ~un þ ðc� bÞ~un�1 � c~un�2� �

� Hnþ1 on CN ð2:28Þ
@su� ¼ f nþ1

s � f n
s

� �
on @CN ð2:29Þ

Prediction step: find unþ1 such that:

r � Dt
q
runþ1

� �

¼r � Dt
q

f nþ1 � f n
� �

� ðb�aÞ~un � ðc� bÞ~un�1 þ c~un�2
� �

in X

ð2:30Þ
@nunþ1 ¼ f nþ1 � f n

� �
�n onCD ð2:31Þ

unþ1 ¼u� on CN ð2:32Þ

Compute the updated pressure and the divergence-free velocity via:

pnþ1 ¼ pn þunþ1 � vlr � ~un in X ð2:33Þ

aunþ1 ¼ Dt
q
ðf nþ1 � f n �runþ1Þ � ðb� aÞ~un

� ðc� bÞ~un�1 þ c~un�2 in X ð2:34Þ

Correction-diffusion problem: find ~unþ1 such that:

q
a~unþ1 þ b~un þ c~un�1

Dt
� lD~unþ1 ¼ f nþ1 �rpnþ1 in X ð2:35Þ

~unþ1 ¼ 0 on CD ð2:36Þ
lr~unþ1 � pnþ1Id
� �

� n ¼ tnþ1 on CN ð2:37Þ

The choice of v permits us to switch from the standard incremental
scheme (v = 0) to the rotational form (v = 1) while the values of a, b,
c move from the first time order to the second:

� a = 1, b = �1, c = 0 for first order Euler time scheme,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 for second order Backward Difference For-

mula time scheme.

3. Numerical experiments

To assess the accuracy of our method, we perform convergence
tests with finite volume and spectral Legendre methods [10]. We
start this section by giving a brief description of the two spatial dis-
cretizations and tools for the numerical simulations. Then, numer-
ical experiments involving the open boundary conditions are
separated into two verification cases on manufactured solutions
of the Stokes equations on the different boundary conditions, and
two validations on physical cases governed by the Navier–Stokes
equations.

3.1. Spatial discretization and linear solvers

3.1.1. Finite volume case
To avoid the well known spurious modes phenomena, the cor-

rection step uses the stable finite volume staggered grid of the
Marker and Cells type [22]. The approximation of the prediction-
diffusion of the Stokes problem step uses a centered scheme of sec-
ond order to compute the predicted velocity. All the computations
are made using the parallel version of a Navier–Stokes solver based
on the block-structured mesh partitioner described in [1]. Finally,
in order to solve the linear systems we use:

� For the prediction step, the multi frontal sparse direct solver
MUMPS [2] for manufactured cases or the GMRES method with
a semi-coarsening geometric multi-grid preconditioner [40,5] of
the HYPRE library [24] for physical cases.
� For the correction step, the iterative BiCGStab method with a

point Jacobi preconditioner of the HYPRE library.

3.1.2. Spectral Legendre case
X is considered as the union of quadrangular elements

X ¼ [K
k¼1Xk. For simplification, we consider only rectilinear ele-

ments with edges collinear to the axes x and y, that is:

Xk ¼�ck; ck0½��dk;dk0½

The partition is conforming in the sense that the intersection
of two adjacent elements is either a vertex, a whole edge, or a
whole face. The discrete and stable subspaces to approximate
the velocity and the pressure, Xp � ðH1

0ðXÞÞ
2 and Mp � L2

0ðXÞ are
chosen to be:

Xp ¼ wp 2 ðH1
0ðXÞÞ

2
;8k¼1; . . . ;K; wk

p ¼wpjXk
2 ðPpðXÞÞ2

n o
ð3:38Þ

Mp ¼ qp 2 L2ðXÞ;8k¼1; . . . ;K; qk
p ¼ qpjXk

2 Pp�2ðXkÞ;
Z

X
qp dx¼0

� 	
ð3:39Þ

The spectral Legendre approach consists in using the Legendre–
Galerkin methods introduced in [10] applied to the variational for-
mulation of elliptic problems introduced in our algorithms.

3.2. Numerical results for the Stokes problem

To evaluate the accuracy of the scheme, we present hereafter
two convergence studies on a manufactured test case: firstly with
the standard implementation of the open boundary condition
(u = 0) and secondly with the proposed one ðu ¼ u�Þ. The error
estimator jjujj2L2ðt�Þ defined in (1.2) is used against the pressure
pnþ1 and the final velocity ~unþ1. The domain is chosen to be
X ¼ ½�1; 1�2 and we enforce the open boundary condition on the
right part of the box and a Dirichlet boundary condition every-
where else. Exact solutions for uex ¼ uex

x1
;uex

x2

� �
and pex are:

uex
x1
ðx1; x2; tÞ ¼ sin x1ð Þ sin x2ð Þ cos 2pxtð Þ

uex
x2
ðx1; x2; tÞ ¼ cos x1ð Þ cos x2ð Þ cos 2pxtð Þ

pexðx1; x2; tÞ ¼ �2 cos 1ð Þ sin 2 x1 � 1ð Þ � x2ð Þ cos 2pxtð Þ
3.2.1. The standard open boundary condition
3.2.1.1. Error convergence rate in space. In order to study the spatial
splitting error we carried out the first numerical experiment with
x ¼ 0. The time step is fixed at Dt ¼ 10�3 and we run the algorithm
for different values of Dx. Stationary tolerance is set to 10�12.

Finite volume case
As long as we attempt to approximate exact solutions by a sec-

ond order scheme, we expect that the errors decay like Dx2, but we
show in Fig. 1 that spatial convergence rates are limited to one for
velocity and to 1/2 for pressure with the standard version in which
u = 0 is enforced on the boundary condition. The usual way to
overcome this difficulty with pressure-correction methods, where
the same problem is encountered, consists in switching to the rota-
tional formulation. This solution also works in the framework of
velocity-correction methods as it gives a second order convergence
rate on the velocity and the pressure.

Spectral Legendre case
As we approximate the same solution by high degree polyno-

mials it is well known that the convergence rate is expected to be-
come of exponential order, meaning that the errors decay like Cp

with C 2�0; 1½. However, as for the finite volume approximation,
for the standard version we observe a saturation of the error rate
for both velocity and pressure. The saturation level is large en-
ough to be regarded as a convergent state. Again, the rotational
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Fig. 1. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt ¼ 10�3 with standard open boundary conditions and
finite volume method.
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version solves the problem and allows spectral convergence. Fig. 2
shows the relative error, on a semi-logarithmic scale as a function
of p.
3.2.1.2. Error convergence rate in time. To study the time splitting
error, we consider the unsteady case x = 0.7 and the errors (1.2)
at t� ¼ 1 with a second order time discretization for a range of time
steps 5� 10�4

6 Dt 6 10�1.
With the finite volume method, we fixed D x at 1/256 and plot-

ted the errors in Fig. 3. The time convergence rate on the velocity is
around 3/2, and on the pressure: 1/2 with standard incremental
scheme and 1 with the rotational one.

With spectral Legendre case, we fixed a number of elements
K = 1 and polynomial degree p fixed at 18 and plotted the errors
in Fig. 4. The standard incremental scheme gives worst results with
no convergence at all for either velocity or pressure. With the rota-
tionnal scheme, we obtain the same convergence rate as with the
finite volume method.
3.2.2. The proposed open boundary condition
3.2.2.1. Error convergence rate in space. With the proposed bound-
ary condition, the representative curves of Figs. 5 and 6 show that
in the stationary case the spatial convergence rate of the velocity
and the pressure are optimal with the standard (v = 0) and the
rotational (v = 1) form with the errors decaying like Dx2 for finite
volume and Cp with C 2�0; 1½ for spectral Legendre.
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Fig. 2. Spatial convergence rates with the standard incremental scheme (left) and th
boundary conditions and spectral Legendre method.
3.2.2.2. Error convergence rate in time. The representative curves of
Fig. 7 show that, with the finite volume method, we have a conver-
gence rate of two for the velocity and 3/2 for pressure with the
standard incremental scheme and two with the rotational one for
both velocity and pressure. Thus, the convergence rate in the pres-
ence of an open boundary condition is now brought to the level ob-
served with the Dirichlet boundary condition.

With spectral Legendre methods, we can see in Fig. 8 that we
also ensure a second order convergence rate for the velocity. But,
unlike the finite volume case for which the rotational and standard
versions give the same results, with slight improvement for the
benefit of the first, the numerical results from spectral Legendre
method show a distinct advantage for the standard version. This
conclusion is confirmed by several numerical tests. A similar con-
clusion can be found in the paper of Guermond and Shen [21]
where the Dirichlet boundary condition is considered for the
Stokes problem (on the right part of figure [3]).

3.2.3. Discussions
The spatial convergence study leads us to the following conclu-

sion. While the standard incremental scheme offers an optimal
convergence rate with Dirichlet boundary conditions, the standard
open boundary condition limits the convergence rates to 1 for the
velocity and 1/2 for pressure with finite volume method and does
not give spectral convergence with spectral Legendre. This numer-
ical locking can be avoided with the rotational incremental
scheme. However, the proposed method provides an optimal con-
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Fig. 3. Time convergence rates with the standard incremental scheme (left) and the rotational scheme (right) at t� ¼ 1 with Dx ¼ 1=256 with standard open boundary
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Fig. 5. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt ¼ 10�3 with proposed open boundary conditions and
finite volume method.
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vergence rate in space in the standard (v = 0) and the rotational
(v = 1) form.

About the error convergence rate in time, we can say that the
standard scheme is limited to a first order convergence rate for
the velocity and 1/2 for the pressure while the proposed imple-
mentation yields a second order convergence rate for the velocity
and 3/2 for pressure which are exactly the convergence rates ob-
tained with Dirichlet boundary conditions only. The rotational
scheme improves the proposed open boundary condition to a sec-
ond order convergence rate for velocity and pressure, but this is
not the case with the standard open boundary condition which re-
mains at 3/2 for the velocity and one for the pressure.
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Fig. 6. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt ¼ 10�3;K ¼ 1 and p = 18 with proposed open
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Fig. 7. Time convergence rates with the standard incremental scheme (left) and the rotational scheme (right) at t� ¼ 1 with Dx ¼ 1=256 with the proposed open boundary
conditions and finite volume method.
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Finally, with the finite volume method, we observe in all com-
putations that r � unþ1 ¼ 0 is reached at the computational preci-
sion ð10�14Þ inside the domain. However, with the standard
implementation of the open boundary condition, the incompress-
ibility constraint is not verified at the boundary condition whereas
it is with the proposed boundary condition. With the spectral
Legendre method the constraint is not exactly satisfied which is
due to spatial discretization.

Remark 1. In Figs. 7 and 3 (left) there is saturation of the time
error by the space error at small time steps due to space
discretization being too coarse.
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Remark 2. A similar study was carried out with the open bound-
ary condition (homogeneous or not); the norm jjuDt jjl2ðEÞ (see 1.1)
was also used. Since the results lead to the same conclusions, they
are not shown here.
Remark 3. In the framework of pressure-correction schemes,
Guermond et al. proved in [19] that, for stability issues, v is neces-
sarily strictly less than 2l=d for pressure-correction schemes.
However, with velocity-correction schemes, this seems to be
unnecessary.
Remark 4. We note that with the finite volume method the
scheme is stable for any Dt, but for Dt < Dx2 the error is nearly con-
stant as illustrated in Fig. 9. However, with the spectral Legendre
method, the scheme is unstable when Dt < p�2.
3.3. Numerical results for the Navier–Stokes flows

In order to validate the code, we study hereafter the flow over a
backward-facing step, studied in [15,4,28,12,18], the steady flow in
a bifurcated tube we studied in [27,36] and the unsteady flow past
a square section cylinder [23,35,41,32,34,36]. We show that we ob-
tain similar results as in [15,28] for the backward-facing step case
and, in both two other cases, we obtain the same results as in [36].
We also develop the bifurcation case by studying the effect of the
Reynolds number on the structure of the flow.

The rotational scheme is used with finite volume method and
second order time discretization presented in a previous section.
The approach adopted for the treatment of the Navier–Stokes
non-linear term ðu � rÞu involved in the material derivative of
the velocity consists in incorporating it in the correction-diffusion
step and linearizing it by ð2~un � ~un�1Þ � r

� �
~unþ1 and applying a sec-

ond-order centered scheme on its conservative form.

3.3.1. Flow over a backward-facing step
We consider the two dimensional steady flow over a backward-

facing step at Re = 800 studied by Garling in [15], Gresho et al. in
[18], Barton in [4], Lyn in [28] and more recently by Erturk in
[12]. In order to compare our results with those from [15,28], we
choose not to consider the inlet part of the step. Hence, we deal
with the Navier–Stokes equations set on a purely rectangular do-
main X ¼ ½0;30� � ½�0:5; 0:5�.

The left boundary condition at fx1 ¼ 0g is separated in two
parts. In the bottom f�0:5 < x2 < 0g there is a no slip condition
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Fig. 9. Time convergence with the standard incremental scheme at t� ¼ 1 with
Dx ¼ 1=10 with the proposed open boundary conditions.
(the step). The upper one f0 < x2 < 0:5g is a Dirichlet boundary
set to Poiseuille flow with a unitary flow rate. The outflow bound-
aries at fx1 ¼ 30g is the proposed open boundary condition, the
remaining boundaries being the no-slip condition. Initialization is
made with u0 ¼ 0 and p0 ¼ 0.

Fig. 10 shows steady state for Re = 800 based on the height of
the channel (q = 1 kg m�3 and m = 1/800 m s�2). The flow is com-
posed of three eddies. A first one is attached to the lower wall
(B) and a second one is attached to the upper horizontal wall (A).
The last one is a Moffatt ([31]) corner vortice (C) appearing in
the lower left corner due to the sudden expension of the section.

We compute two parameters characterizing the flow:

� The total kinetic energy: ec ¼
R

X
1
2 qu2 dx

� The charge drop: Dh¼ 1
2

R
L u �nð Þ2 dl�

R
R u �nð Þ2 dl

h i
þ 1

q

R
L p dl�


R
R p dl�

where L is the left boundary condition, and R right one.
The Richardson extrapolation framework [37,38] is used to

compute the convergence rates and extrapolated values of these
parameters computed on four meshes of step size h1;h2;h3 and
h4 verifying consecutive ratio equal to two. The convergence rate
a and the extrapolated value fext with four meshes are given by:

a ¼
ln

fh1
�fh3

fh2
�fh4

� �
ln h1

h2

� � ð3:40Þ

fext ¼
h3
h4

� �a
fh4 � fh3

h3
h4

� �a
� 1

ð3:41Þ

We assess the accuracy of the solutions by computing the
parameters for three meshes, the convergence rates and the
extrapolated values. The results are detailed in Table 1 and illus-
trated in the Fig. 11 where one can see that a second order space
convergence rate is obtained.

In order to precisely compare the results with [15,28], a descrip-
tion of the eddies (position ðx1; x2Þ and vorticity (x) at the center,
and detachment and reattachment points coordinates) is given in
Table 2. We observe that the results are very close to those ob-
tained in [15] with a finite elements method and those obtained
in [28] with a spectral method. In both cases an open boundary
condition has also been used, except that Gartling set the tangen-
tial velocity to zero in [15].

We can also compare the pressure and shear stress distribution
on the upper and lower wall as illustrated in the Fig. 12 and the
cross-channel profiles at x = 7 and x = 15 of the velocity, vorticity,
pressure, normal and shear stress in Figs. 13–15. One can see that
we are in total agreement with the reference [15].

In the Figs. 12–15 we referenced each local extremum with
numbers. Following a procedure detailed in [29,30], it is possible
to compute convergence order and extrapolation of the values
and positions of some of them. The reason why its not possible
on all extrema is due to the fact that profiles from two disctinct
meshes may intersect in the vicinity of an extrema. First the pro-
files of the three coarserst meshes are interpolated on the nodes
of the finest grid using a cubic spline interpolation. Then, on each
node, we can proceed to Richardson extrapolation. At last, the
extrapolated profiles are interpolated on a finer grid to obtain more
precise positions and values of the extremum. Results are detailed
in Table 3.

3.3.2. Flow in a bifurcated tube
We deal with the Navier–Stokes equations set on the domain

shown in Fig. 16:



Fig. 10. Steady state of the backward-facing step case at Reynolds number equal to 800. Pressure and streamlines. Eddies are highlighted with letters, detachment and
reattachment points are numbered.

Fig. 11. Spatial convergence rate based on the extrapolation.

Table 1
Details of some parameters in the backward-facing step case for different meshes. Convergence rates and extrapolated values.

Space step size 1/50 1/100 1/200 1/400 Extrapolation

Value Order

Kinetic energy 5:6148� 10þ0 5:6228� 10þ0 5:6248� 10þ0 5:6253� 10þ0 5:6255� 10þ0 2.00

Charge drop �7:8764� 10�2 �7:9092� 10�2 �7:9183� 10�2 �7:9213� 10�2 �7:9225� 10�2 1.80
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X ¼ ½0;8� � ½�0:5; 0:5� n ½0; 0:5� � ½�0:5; 0� [ ½1:5; 8� � ½�0:1; 0:2�f g

The inflow boundary at fx1 ¼ 0g is a Dirichlet boundary set to
Poiseuille flow with a unitary flow rate. The two outflow bound-
Table 2
Details of eddies characteristics in the the backward-facing step case for different meshes

Dx 0.02 0.01 0.005

Eddy A x1 7:4510� 10þ0 7:4514� 10þ0 7:4513� 1
Eddy A x2 3:1411� 10�1 3:1510� 10�1 3:1528� 1
Eddy A x 1:1784� 10þ0 1:1511� 10þ0 1:1509� 1
Point 1 x1 4:9800� 10þ0 4:9250� 10þ0 4:8900� 1
Point 2 x1 1:0280� 10þ1 1:0400� 10þ1 1:0440� 1
Eddy B x1 3:3861� 10þ0 3:3932� 10þ0 3:3953� 1
Eddy B x2 �2:0362� 10�1 �2:0411� 10�1 �2:0421� 1
Eddy B x �2:2639� 10þ0 �2:2602� 10þ0 �2:2622� 1
Point 3 x1 6:0300� 10þ0 6:0700� 10þ0 6:0850� 1
Eddy C x1 3:0233� 10�2 3:3770� 10�2 3:4744� 1
Eddy C x2 �4:7002� 10�1 �4:6653� 10�1 �4:6553� 1
Eddy C x 3:3173� 10�3 5:6241� 10�3 6:2840� 1
Point 4 x1 6:0000� 10�2 7:0000� 10�2 8:0000 � 1
Point 5 x2 4:4000� 10�1 4:3000� 10�1 4:2500� 1
aries at fx1 ¼ 8g are the proposed open boundary condition, the
remaining boundaries being the no-slip condition. Initialization is
made with u0 ¼ 0 and p0 ¼ 0.

Fig. 16 shows steady state for Re = 600 based on the height of
the larger section (q = 1 kg m�3 and m = 1/600 m s�2). The flow is
composed of six eddies. An infinite series of Moffatt ([31]) corner
vortices (D,E,F) of increasingly smaller amplitude appears in the
lower left corner due to the sudden expansion of the section. Three
other recirculations (A,B,C) are attached to the horizontal walls
due to the contraction of the section.

In order to characterize the flow, we compute the total kinetic
energy, the outflux and the charge drops in the upper or lower
channel. The Richardson extrapolation framework [37,38] (Eqs.
(3.40), (3.41)) continue to be used to compute the convergence
rates and extrapolated values.

In order to precisely compare the results with [36], the values at
Re = 600 of the parameters for five meshes are detailed in Table 4
and the convergence rates computed with the four finest meshes
in Tables 5. A description of the eddies (position ðx1; x2Þ and vortic-
ity (x) at the center, and detachment and reattachment points
coordinates) is given in Table 6. We observe that the results are
qualitatively the same as in [27], where an open boundary condi-
tion has also been used, and very close to those we described in
.

0.0025 Gartling [15] Lyn [28]

0þ0 7:4551� 10þ0 7:400� 10þ0 7:4470� 10þ0

0�1 3:1535� 10�1 3:000� 10�1 3:1500� 10�1

0þ0 1:1493� 10þ0 1:322� 10þ0 1:3212� 10þ0

0þ0 4:8725� 10þ0 4:850� 10þ0 4:8534� 10þ0

0þ1 1:0461� 10þ1 1:048� 10þ1 1:0479� 10þ1

0þ0 3:3958� 10þ0 3:350� 10þ0 3:3920� 10þ0

0�1 �2:0425� 10�1 �2:000� 10�1 �2:0400� 10�1

0þ0 �2:2621� 10þ0 �2:283� 10þ0 �2:2822� 10þ0

0þ0 6:0913� 10þ0 6:100� 10þ0 6:0964� 10þ0

0�2 3:4847� 10�2 – –

0�1 �4:6455� 10�1 – –

0�3 6:3700� 10�3 – –

0�2 8:3750� 10�2 – –

0�1 4:2000� 10�1 – –
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Fig. 12. Pressure and shear stress along upper and lower channel wall. Ref. from Gartling [15].
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Fig. 13. Horizontal and vertical velocity across the channel at x = 7 and x = 15. Ref. from Gartling [15].
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Fig. 14. Vorticity and pressure across the channel at x = 7 and x = 15. Ref. from Gartling [15].
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[36]. In both studies, a first order space convergence rate is
obtained, which is caused, we presume, by the singularity of the
geometry at the corners of the domain [9].

We decided to push further the analysis of this case by comput-
ing the flow for various values of Re by varying the inlet velocity
while remaining in laminar flow regime. As illustrated in Fig. 17,
we observed that the eddies C, B and A appear in that order when
the Reynolds number increases. We have determined the critical
Reynolds number of apparitions of those three recirculations listed
in the Table 7.

For the different Reynolds numbers we detailed in Table 8 the
values of the extrapolated parameters with the convergence rates



17

Fig. 15. Normal and shear stress across the channel at x = 7 and x = 15. Ref. from Gartling [15].

Table 3
Positions, values and convergence order of some extrema. The value and position are
extracted from the finest mesh if there is no convergence order, from an extrapolated
solution otherwise.

Extremum Order X1 X2 Values

1 2.30 1:1085� 10þ0 5:0000� 10�1 �1:5357� 10�1

2 – 1:4699� 10þ1 5:0000� 10�1 8:0202� 10�2

3 2.30 6:3625� 10þ0 �5:0000� 10�1 3:7169� 10�2

4 2.39 7:7525� 10þ0 �5:0000� 10�1 1:2701� 10�2

5 – 1:4774� 10þ1 �5:0000� 10�1 8:0158� 10�2

6 2.09 8:2325� 10þ0 5:0000� 10�1 1:5877� 10�3

7 2.26 5:2765� 10þ0 �5:0000� 10�1 �6:8583� 10�3

8 1.80 7:0945� 10þ0 �5:0000� 10�1 6:4549� 10�3

9 2.01 1:1095� 10þ1 �5:0000� 10�1 1:6905� 10�3

10 – 7:0000� 10þ0 �1:3350� 10�1 1:1216� 10þ0

11 2.09 7:0000� 10þ0 4:0550� 10�1 �4:9519� 10�2

12 2.06 1:5000� 10þ1 �1:0500� 10�2 8:5391� 10�1

13 2.12 7:0000� 10þ0 �1:7250� 10�1 �1:9083� 10�2

14 1.97 1:5000� 10þ1 �2:3350� 10�1 �1:9686� 10�3

15 2.00 1:5000� 10þ1 1:8150� 10�1 2:8398� 10�3

16 1.98 7:0000� 10þ0 6:8500� 10�2 3:8128� 10þ0

17 1.99 7:0000� 10þ0 7:1500� 10�2 �4:6368� 10�3

Fig. 16. Steady state of the bifurcation case at Reynolds number equal t
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listed in Table 9. Finally, a description of the eddies (position for
the finest mesh) is given in Table 10.
3.3.3. Flow past a square section cylinder
We consider the two dimensional unsteady flow past a square

cylinder studied by [41,34,23,35,32] with a normal incidence and
Re = 100. The Reynolds number is based on the free-stream veloc-
ity ðu1 ¼ 1 m s�1Þ, the square width H = 1 m, the density
q = 1 kg m�3 and the viscosity m = 0.001 m s�2. We consider two
computational domains where the distance between the outflow
boundary condition and the cylinder is respectively 6H and 30H:

X1 ¼ ½�10:5;6:5� � ½�10:5;10:5�
X2 ¼ ½�10:5;30:5� � ½�10:5;10:5�

The inflow boundary at fx1 ¼ �10:5g is a Dirichlet condition set
to a constant horizontal flow, the outflow boundary at fx1 ¼ 6:5g
or fx1 ¼ 30:5g is the proposed boundary condition. A symmetry
condition is imposed on the upper and lower boundaries. The no-
slip condition is enforced on the square obstacle placed at
ðx1; x2Þ ¼ ð0; 0Þ. The meshes have around two million nodes with
a constant space step of 0.002 in the sub-domain
o 600. Pressure and streamlines. Eddies are numbered with letters.



Table 6
Details of eddies characteristics in the bifurcated tube for different meshes.

Dx 0.02 0.01 0.005 0.0025 0.00125

Eddy A x1 1:2512� 10þ0 1:2534� 10þ0 1:2574� 10þ0 1:2594� 10þ0 1:2605� 10þ0

Eddy A x2 4:7814� 10�1 4:7687� 10�1 4:7457� 10�1 4:7364� 10�1 4:7308� 10�1

Eddy A x 5:6046� 10�1 6:0321� 10�1 6:8091� 10�1 7:0220� 10�1 7:1599� 10�1

Point 1 x1 1:2000� 10þ0 1:1200� 10þ0 1:0850� 10þ0 1:0700� 10þ0 1:0600� 10þ0

Point 2 x1 1:3000� 10þ0 1:3400� 10þ0 1:3600� 10þ0 1:3725� 10þ0 1:3763� 10þ0

Eddy B x1 1:6449� 10þ0 1:6257� 10þ0 1:6234� 10þ0 1:6225� 10þ0 1:6219� 10þ0

Eddy B x2 2:2610� 10�1 2:2515� 10�1 2:2236� 10�1 2:2070� 10�1 2:1971� 10�1

Eddy B x �8:4235� 10þ0 �1:0070� 10þ1 �9:1217� 10þ0 �8:5555� 10þ0 �8:2186� 10þ0

Point 3 x1 1:7600� 10þ0 1:8100� 10þ0 1:8200� 10þ0 1:8175� 10þ0 1:8163� 10þ0

Point 4 x2 1:0000� 10�1 1:0000� 10�1 1:0000� 10�1 1:0000� 10�1 9:8750� 10�2

Eddy C x1 2:1183� 10þ0 2:0943� 10þ0 2:0844� 10þ0 2:0803� 10þ0 2:0784� 10þ0

Eddy C x2 �2:1843� 10�1 �2:1644� 10�1 �2:1498� 10�1 �2:1406� 10�1 �2:1356� 10�1

Eddy C x 1:0540� 10þ1 1:0179� 10þ1 9:9618� 10þ0 9:8571� 10þ0 9:8138� 10þ0

Point 5 x1 2:7800� 10þ0 2:7900� 10þ0 2:7950� 10þ0 2:7975� 10þ0 2:7975� 10þ0

Eddy D x1 1:1225� 10þ0 1:1340� 10þ0 1:1384� 10þ0 1:1402� 10þ0 1:1410� 10þ0

Eddy D x2 �2:9329� 10�1 �2:9682� 10�1 �2:9818� 10�1 �2:9873� 10�1 �2:9898� 10�1

Eddy D x �2:7663� 10þ0 �2:7887� 10þ0 �2:7943� 10þ0 �2:7948� 10þ0 �2:7945� 10þ0

Point 6 x1 1:4400� 10þ0 1:4600� 10þ0 1:4700� 10þ0 1:4725� 10þ0 1:4750� 10þ0

Eddy E x1 5:6856� 10�1 5:6460� 10�1 5:6230� 10�1 5:6094� 10�1 5:6023� 10�1

Eddy E x2 �4:4270� 10�1 �4:4497� 10�1 �4:4646� 10�1 �4:4729� 10�1 �4:4772� 10�1

Eddy E x 2:9552� 10�2 2:6009� 10�2 2:4410� 10�2 2:3541� 10�2 2:3089� 10�2

Point 7 x2 �3:8000� 10�1 �3:8000� 10�1 �3:8000� 10�1 �3:8000� 10�1 �3:8000� 10�1

Point 8 x1 6:6000� 10�1 6:6000� 10�1 6:6500� 10�1 6:6500� 10�1 6:6375� 10�1

Eddy F x1 – – – 5:0269� 10�1 5:0316� 10�1

Eddy F x2 – – – �4:9732� 10�1 �4:9684� 10�1

Eddy F x – – – �6:5699� 10�5 �1:3643� 10�4

Point 9 x2 – – – �4:9750� 10�1 �4:9375� 10�1

Point 10 x1 – – – 5:0500� 10�1 5:0625� 10�1

Table 4
Details of some parameters in the bifurcated tube for different meshes.

Space step size 0.02 0.01 0.005 0.0025 0.00125

Velocity correction Total kinetic energy 2:0144� 10þ0 2:0025� 10þ0 1:9965� 10þ0 1:9937� 10þ0 1:9922� 10þ0

Top outflux 1:9802� 10�1 1:9621� 10�1 1:9506� 10�1 1:9445� 10�1 1:9412� 10�1

Bottom outflux 3:0118� 10�1 3:0359� 10�1 3:0489� 10�1 3:0554� 10�1 3:0587� 10�1

Top charge drop 4:2242� 10�1 4:1188� 10�1 4:0563� 10�1 4:0234� 10�1 4:0058� 10�1

Bottom charge drop 4:2118� 10�1 4:1129� 10�1 4:0534� 10�1 4:0220� 10�1 4:0052� 10�1

Pressure correction Total kinetic energy 2:0142� 10þ0 2:0025� 10þ0 1:9965� 10þ0 1:9937� 10þ0 1:9923� 10þ0

Top outflux 1:9803� 10�1 1:9623� 10�1 1:9505� 10�1 1:9443� 10�1 1:9410� 10�1

Bottom outflux 3:0117� 10�1 3:0357� 10�1 3:0490� 10�1 3:0556� 10�1 3:0589� 10�1

Top charge drop 4:2338� 10�1 4:1251� 10�1 4:0639� 10�1 4:0309� 10�1 4:0131� 10�1

Bottom charge drop 4:2223� 10�1 4:1189� 10�1 4:0607� 10�1 4:0292� 10�1 4:0123� 10�1

Table 5
Extrapolation of some parameters in the bifurcated tube.

Pressure correction Velocity correction

Extrapolated value Extrapolation order Extrapolated value Extrapolation order

Total kinetic energy 1:9909� 10þ0 1.07 1:9909� 10þ0 1.04

Top outflux 1:9374� 10�1 0.92 1:9375� 10�1 0.91

Bottom outflux 3:0623� 10�1 1.01 3:0622� 10�1 0.98

Top charge drop 3:9924� 10�1 0.89 3:9861� 10�1 0.92

Bottom charge drop 3:9925� 10�1 0.89 3:9861� 10�1 0.91
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�2; 4½ � � �2; 2½ �. Step size increases toward the boundaries. The
initialization of pressure is made with p0 ¼ 0. To destabilize the
solution, an unsymmetrical velocity field is initialized: for x2 > 0
u0 ¼ ð1:1; 0Þ and, for x2 < 0;u0 ¼ ð0:9; 0Þ. The computations are
made with Dt ¼ 0:003.
The various global parameters characterizing the flow are de-
fined as:

� The lift coefficient: CL ¼
2Fx2
qu1H.

� The drag coefficient: CD ¼
2Fx1
qu1H.



Fig. 17. Steady state of the bifurcation case for various Reynolds numbers. Pressure and streamlines.

Table 7
Critical Reynolds number of eddy appearance in the bifurcated tube for different
meshes.

Space step size 0.02 0.01 0.005 0.0025 Extrapolation Order

Eddy A 504 375 336 320 312 1.61
Eddy B 457 394 375 367 363 1.60
Eddy C 123 118 116 114 111 0.81

Table 9
Extrapolation order of the extrapolation of some parameters in the bifurcated tube for
different Reynolds numbers.

Re 90 240 345 600

Total kinetic energy 1.35 1.19 1.12 1.04
Top outfluxa 0.19 0.75 0.83 0.91
Bottom outflux 1.27 0.99 0.97 0.98
Top charge drop 1.49 1.08 0.99 0.92
Bottom charge drop 1.66 1.10 1.00 0.91

a In Table 9, the convergence rate of the top outflux degrades when the Reynolds
number diminishes. This is due to the coarsest mesh and is not representative of the
accuracy of the computation since the convergence rate for Re = 90 computed with
the three finest meshes is 0.79. We also computed the convergence rate of the total
outflux: 2.00 and the difference of outflux between up and bottom: 1.00. This
counter-intuitive behaviour has been confirmed with pressure-correction methods.
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� The Strouhal number: St ¼ fH
U1

.

where f is the shedding frequency. Fx1 and Fx2 are the sums of both
pressure and viscous forces in the x1 and x2 directions around the
Cc boundary of the cylinder: Fx1 ; Fx2

� �
¼
R

Cc
r � n where r is the

Cauchy stress tensor.
The result is a periodic Bénard–von Kármán vortex street shown

in Fig. 18 where one can see the vorticity in the two domains at the
same phase (first time step just after the sign change of the rota-
tional at ðx1; x2Þ ¼ ð1; 0Þ). As we can see, the boundary condition
does not affect the flow excessively. Indeed the slight perturba-
Table 8
Details of some parameters in the bifurcated tube for different Reynolds numbers. Extrap

Re 90 240

Total kinetic energy 4:2416� 10�2 3:0641� 10�1

Top outflux 2:3749� 10�2 6:7754� 10�2

Bottom outflux 5:1231� 10�2 1:3223� 10�1

Top charge drop 5:9172� 10�2 1:5774� 10�1

Bottom charge drop 5:9168� 10�2 1:5774� 10�1
tions it can produce remain near itself. Values of the Strouhal num-
ber, the lift coefficient and the drag coefficient are detailed in Table
11, and are in agreement with the literature and very close with
the results we detailed in [36].
olated values.

345 600

6:5142� 10�1 1:9909� 10þ0

1:0263� 10�1 1:9375� 10�1

1:8734� 10�1 3:0622� 10�1

2:2922� 10�1 3:9861� 10�1

2:2922� 10�1 3:9861� 10�1



Table 10
Details of eddies characteristics in the bifurcated tube for different Reynolds numbers with the finest mesh.

Re 90 240 345 600

Eddy A x1 – – 1:2495� 10þ0 1:2605� 10þ0

Eddy A x2 – – 4:9233� 10�1 4:7308� 10�1

Eddy A x – – 9:7070� 10�2 7:1599� 10�1

Point 1 x1 – – 1:1750� 10þ0 1:0600� 10þ0

Point 2 x1 – – 1:3081� 10þ0 1:3763� 10þ0

Eddy B x1 – – – 1:6219� 10þ0

Eddy B x2 – – – 2:1971� 10�1

Eddy B x – – – �8:2186� 10þ0

Point 3 x1 – – – 1:8163� 10þ0

Point 4 x2 1:0875� 10�1 9:8750� 10�1 9:6875� 10�1 9:8750� 10�2

Eddy C x1 – 1:7242� 10þ0 1:8392� 10þ0 2:0784� 10þ0

Eddy C x2 – �1:6099� 10�1 �1:8960� 10�1 �2:1356� 10�1

Eddy C x – 2:9173� 10þ0 5:0853� 10þ0 9:8138� 10þ0

Point 5 x1 – 2:0706� 10þ0 2:3581� 10þ0 2:7975� 10þ0

Eddy D x1 8:7315� 10�1 1:0436� 10þ0 1:0939� 10þ0 1:1410� 10þ0

Eddy D x2 �2:3601� 10�1 �2:6511� 10�1 �2:8121� 10�1 �2:9898� 10�1

Eddy D x �3:5560� 10�1 �1:1120� 10þ0 �1:6630� 10þ0 �2:7945� 10þ0

Point 6 x1 1:2594� 10þ0 1:4088� 10þ0 1:4406� 10þ0 1:4750� 10þ0

Eddy E x1 5:1874� 10�1 5:2541� 10�1 5:3103� 10�1 5:6023� 10�1

Eddy E x2 �4:8128� 10�1 �4:7481� 10�1 �4:6957� 10�1 �4:4772� 10�1

Eddy E x 2:6976� 10�3 6:1353� 10�3 8:5275� 10�3 2:3089� 10�2

Point 7 x2 �4:5625� 10�1 �4:4000� 10�1 4:2813� 10�1 �3:8000� 10�1

Point 8 x1 5:4438� 10�1 5:6125� 10�1 5:7563� 10�1 6:6375� 10�1

Eddy F x1 – – 5:0143� 10�1 5:0316� 10�1

Eddy F x2 – – �4:9857� 10�1 �4:9684� 10�1

Eddy F x – – �2:3526� 10�5 �1:3643� 10�4

Point 9 x2 – – �4:9750� 10�1 �4:9375� 10�1

Point 10 x1 – – 5:0250� 10�1 5:0625� 10�1

Table 11
Comparison of computed flow metrics.

References St Average CD r.m.s CL

Velocity-correction 6H 0.143234 1.461273 0.152938
Velocity-correction 30H 0.147167 1.477627 0.142726
Pressure-correction [36] 6H 0.143235 1.461515 0.153056
Pressure-correction [36] 30H 0.147167 1.478745 0.142652
Sohankar et al. [41] 0.146 1.46 0.139
Pavlov et al. [34] 0.150 1.51 0.137
Hasan et al. [23] 0.144 1.40 –
Pontaza and Reddy [35] 0.140 1.48 0.141
Okajima [32] (Exp) 0.143 – –

Fig. 18. Instantaneous vorticity contours for the two domains.
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