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We present in this paper a numerical scheme for incompressible Navier–Stokes equations
with open and traction boundary conditions, in the framework of pressure-correction
methods. A new way to enforce this type of boundary condition is proposed and provides
higher pressure and velocity convergence rates in space and time than found in the present
state of the art. We illustrate this result by computing some numerical and physical tests.
In particular, we establish reference solutions of a laminar flow in a geometry where a
bifurcation takes place and of the unsteady flow around a square cylinder.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The main difficulty in obtaining the numerical solution of the incompressible Navier–Stokes equations, apart from the
treatment of non-linearities, lies in the Stokes stage and specifically in the determination of the pressure field which will
ensure a solenoidal velocity field. The question is how to uncouple the velocity and the pressure operators to efficiently reach
an accurate solution to the unsteady Stokes problem, without degrading the predefined stability properties of the chosen
scheme for the Navier–Stokes equations.

Historically, the first idea was proposed by Uzawa [1,2] and applied for numerical approximations with several methods
[3,4]. It is a safe and efficient method for the numerical approximation of the Stokes problem. In complex geometries or
three-dimensional domains, this method turns out to be inappropriate for its computational time cost which becomes very
high. A different method is to uncouple the pressure from the velocity by means of a time splitting scheme that significantly
reduces the computational cost. A large number of theoretical and numerical works have been published that discuss the
accuracy and the stability properties of such methods. The most widespread methods are pressure-correction schemes. They
were first introduced by Chorin-Temam [5,6], and improved by Goda (the standard incremental scheme) in [7], and later by
Timmermans in [8] (the rotational incremental scheme). They require the solution of two sub-steps for each time step: the
pressure is treated explicitly in the first one, and is corrected in the second one by projecting the predicted velocity onto an
ad hoc space. The governing equation on the pressure or the pressure increment is a Poisson equation derived from the
. All rights reserved.
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momentum equation by requiring incompressibility. In [9,10], the authors proved the reliability of such approaches from the
stability and the convergence rate point of view. A series of numerical issues related to the analysis and implementation of
fractional step methods for incompressible flows are addressed in the review paper of Guermond et al. [11]. In this reference,
the authors describe the state of the art for both theoretical and numerical results related to the time splitting approach. One
emerging conclusion points out that time splitting can be a high order alternative to solve the unsteady Stokes problem
when the velocity boundary condition is of the Dirichlet type.

However, in many applications such as free surface problems and channel flows, one also has to deal with an outlet
boundary condition on all or part of the boundary, on which the applied numerical condition should not disturb upstream
flow. A large variety of this kind of boundary condition exists [12,13], such as the non-reflecting outlet boundary condition
(and its adaptations) derived from a wave equation, which is suited to wake and jet flow with moderate and high Reynolds
number [14–19]. Hereafter we will present some improvements on the open or traction boundary condition which is effi-
cient for low Reynolds number and fluid–structure interactions [20–22]. The traction boundary condition was successfully
used to compute various flows such as those around a circular cylinder, over a backward facing step and in a bifurcated tube
[20]. Bruneau [23] proposes an evolution of the traction boundary condition involving inertial terms. Hasan [24] proposes, in
the computation of incompressible flow around rigid bodies, to extrapolate velocity on the outflow boundary, pressure being
obtained through traction boundary conditions.

In the case of open or traction boundary conditions, several questions remain open especially when the pressure-correc-
tion version is considered as mentioned in [10]. Indeed, Guermond et al. [11], have proven that only spatial and time con-
vergence rates between O(Dx + Dt) and O(Dx3/2 + Dt3/2) on the velocity and O(Dx1/2 + Dt1/2) on the pressure are to be
expected with the standard incremental scheme, and between O(Dx + Dt) and O(Dx3/2 + Dt3/2) on the velocity and pressure
for the rotational incremental scheme. Févrière [25] combines the penalty and projection methods to improve error levels of
a manufactured case with open boundary conditions, but without improvement of the convergence rate. Finally, Liu [20],
with a pressure Poisson equation formulation, proposes a new implementation of the open and traction boundary condi-
tions. He proves unconditional stability with a first order time scheme and shows second order numerical convergence rate
on velocity and pressure.

The aim of this paper is to propose a numerical scheme for the incompressible Navier–Stokes equations with open and
traction boundary conditions, using the pressure-correction version of the time splitting methods. A new way to enforce this
type of boundary condition is proposed and improves the order of convergence for both pressure and velocity. In the second
part of this article we will describe the governing equations, and, in the third part, the pressure-correction schemes for open
boundary conditions. In the fourth part, we will present the improvements we made on the numerical implementation of the
traction and open boundary conditions. In a fifth section we will illustrate numerically the proposed method with two man-
ufactured cases and two physical cases.

First of all we specify some notations. Let us consider a Lipschitz domain X � Rd; ðd ¼ 2 or 3Þ, the generic point of X is
denoted x. The classical Lebesgue space of square integrable functions L2(X) is endowed with the inner product:
ð/;wÞ ¼
Z

X
/w dx;
and the norm
kwkL2ðXÞ ¼
Z

X
jwðxÞj2

� �1
2

:

We break the time interval [0, t⁄] into N subdivisions of length Dt ¼ t�
N, called the time step, and define tn = nDt, for any n,

0 6 n 6 N. Let u0,u1, . . . ,uN be some sequence of functions in E = L2. We denote this sequence by uDt, and we define the fol-
lowing discrete norm
kuDtkl2ðEÞ ¼ Dt
XN

k¼0

kukk2
E

 !1
2

: ð1:1Þ
In practice the following error estimator can be used
kuk2
Eðt�Þ ¼ kuð�; t�ÞkE: ð1:2Þ
Finally, bold Latin letters like u, w, f, etc., indicate vector valued quantities, while capitals (e.g. X, etc.) are functional sets
involving vector fields.

2. Governing equations

Let X be a regular bounded domain in Rd with n the unit normal to the boundary C = @X oriented outward. We suppose
that C is partitioned into two portions CD and CN.

Our study consists, for a given finite time interval [0, t⁄] in computing velocity u = u(x, t) and pressure p = p(x, t) fields
satisfying:
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q@tu� lDuþ $p ¼ f in X� ½0; t��; ð2:3Þ

$ � u ¼ 0 in X� ½0; t��; ð2:4Þ

u ¼ g on CD � ½0; t��; ð2:5Þ

lru� pIdð Þn ¼ t on CN � ½0; t��; ð2:6Þ
where q and l are respectively the density and the dynamic viscosity of the flow. The body force f = f(x, t), the pseudo-
constraint t = t(x, t) and the boundary condition g = g(x, t) are known. For sake of simplicity, we chose g = 0. Finally, the initial
state is characterised by a given u(.,0).

In some cases, the open or natural boundary condition (2.6) can be replaced by the traction boundary condition written as
l ruþruT
� �

� pId
� �

n ¼ t: ð2:7Þ
3. Pressure-correction schemes for open boundary condition

We shall compute two sequences (un)06n6N and (pn)06n6N in a recurrent way that approximate in some sense the quan-
tities (u(., tn))06n6N and (p(., tn))06n6N, solutions of the unsteady Stokes problem (2.3)–(2.6). Its semi-discrete version reads:
q
aunþ1 þ bun þ cun�1

Dt
� lDunþ1 þrpnþ1 ¼ f nþ1 in X; ð3:8Þ

r � unþ1 ¼ 0 in X; ð3:9Þ
unþ1 ¼ 0 on CD; ð3:10Þ
lrunþ1 � pnþ1Id
� �

n ¼ tnþ1 on CN : ð3:11Þ
Values of parameters a, b, c depend on the temporal scheme used. Namely:

� a = 1, b = �1, c = 0 for the first order Euler time scheme,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 for the second order Backward Difference Formulae time scheme.

Eqs. (3.8)–(3.11) are split into two subproblems. The first is the prediction diffusion problem that computes a prediction
velocity fields: find un+1/2 such that:
q
aunþ1=2 þ bun þ cun�1

Dt
� lDunþ1=2 þrpn ¼ f nþ1 in X; ð3:12Þ

unþ1=2 ¼ 0 on CD; ð3:13Þ
lrunþ1=2 � ~pnþ1Id
� �

n ¼ tnþ1 on CN: ð3:14Þ
In the last Eq. (3.14), the expression of ~pnþ1 depends on the considered time scheme. To ensure the expected order of the time
approximation, we propose two cases:

� a = 1, b = �1, c = 0 then ~pnþ1 ¼ pn,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 then ~pnþ1 ¼ 2pn � pn�1.

The second step is a pressure-continuity correction: find (un+1,pn+1) such that:
qa
Dt

unþ1 � unþ1=2� �
þrunþ1 ¼ 0 in X; ð3:15Þ

r � unþ1 ¼ 0 in X; ð3:16Þ

unþ1 � n ¼ 0 on CD; ð3:17Þ

B:C:nþ1 on CN: ð3:18Þ
and the pressure is upgraded via:
pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X: ð3:19Þ
The parameter v is used to switch between the standard incremental scheme and the rotational one:

� v = 0 for the standard incremental scheme,
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� v = 0.7 for the rotational incremental scheme1.

The second step is rewritten as a Poisson problem on un+1:
1 Ide
Dt
aq
r � runþ1 ¼ r � unþ1=2 in X; ð3:20Þ

@

@n
unþ1 ¼ 0 on CD; ð3:21Þ

B:C:nþ1 on CN; ð3:22Þ
completed by:
pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X; ð3:23Þ

unþ1 ¼ unþ1=2 � Dt
qa
runþ1 in X: ð3:24Þ
The main result of this contribution lies in the definition of B.C.n+1 in (3.22). As mentioned in [22] the ‘‘natural choice’’ which
consists in considering un+1 equals zero on CN leads to a kind of numerical locking for v = 0 since the boundary condition on
the pressure increment causes the pressure on the limit to be equal to its initial value. The convergence of the algorithm is
low and slow. To circumvent this difficulty the authors suggest to use the rotational incremental version. In the present work
we propose an alternative improving the accuracy for the standard incremental version while remaining compatible with the
rotational one. Indeed, the boundary condition on u can be induced by derivation of the Helmholtz–Hodge decomposition of
the un+1/2 (3.15). This approach has already been followed by Brazza in [17] and Kirpatrick in [26] for other kinds of outlet
boundary conditions (non-reflecting or Neumann).

4. Improvement of the pressure boundary conditions

For the sake of simplicity we choose X to be a square and we fix CN at its right boundary. The starting point of our ap-
proach is the first component of Eq. (3.15) that we derive on x1:
� Dt
aq

@x2
1
unþ1 ¼ @x1 unþ1

x1
� @x1 u

nþ1
2

x1
: ð4:25Þ
We project Eqs. (3.11) and (3.14) on direction x1:
l@x1 unþ1
x1
� pnþ1 ¼ tnþ1

x1
; ð4:26Þ

l@x1 u
nþ1

2
x1
� ~pnþ1 ¼ tnþ1

x1
; ð4:27Þ
and combining those three equations, one can verify that (4.25) is equivalent to:
� Dt
aq

@x2
1
unþ1 ¼ 1

l
ðpnþ1 � ~pnþ1Þ: ð4:28Þ
Depending on the choice of the time splitting version and the time order scheme, pnþ1 � ~pnþ1 can be replaced by its approx-
imation expression using un+1 and the divergence of the predicted velocity. For the first order time scheme, we easily derive
the following boundary conditions:
Dt
aq

@x2
1
þ 1

l

� �
unþ1 ¼ vr � unþ1

2: ð4:29Þ
Or, for a second order scheme:
Dt
aq

@x2
1
þ 1

l

� �
unþ1 ¼ un

l
þ vr � unþ1

2 � un�1
2

� �
: ð4:30Þ
Subtracting (4.29) or (4.30) in (3.20) leads to a version that is easier to implement:

� First-order open boundary condition (OBC1):
Dt
aq

@x2
2
� 1

l

� �
unþ1 ¼ ð1� vÞr � unþ1

2: ð4:31Þ
ally, v = 1 but as Guermond proved in [22], for stability issues, v is necessarily strictly less than 2l/d.
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� Second-order open boundary condition (OBC2):
Dt
aq

@x2
2
� 1

l

� �
unþ1 ¼ ð1� vÞr � unþ1

2 �un

l
þ vr � un�1

2: ð4:32Þ
In summary, our approach differs from the usual one by the definition of the boundary condition on CN in the correction
step.

We end this section by describing the extension of (4.31) and (4.32) to a more general partition of the boundary oX.

4.1. Generalisation of the boundary condition

Extension to a more general definition of CN requires new notations to be introduced. Let us denote by D(u) = (ru +ruT)/
2, the rate of deformation tensor and r(u,p) = �pId + 2lD the stress one. n and s are respectively the units normal to the
boundary oriented outward and the associated unit tangent vector.

The traction boundary condition r(u,p): n = t projected on n and s is written:
2lDðunþ1Þ : n � n� pnþ1 ¼ tnþ1 � n; ð4:33Þ

2lDðunþ1Þ : n � s: ¼ tnþ1 � s: ð4:34Þ
Applying D to (3.15) gives us:
Dðunþ1Þ � D unþ1
2

� �
¼ � Dt

aq
D runþ1
� �

: ð4:35Þ
Denoting L(un+1) = D(run+1), we have:
Dðunþ1Þ : n � n� D unþ1
2

� �
: n � n ¼ � Dt

aq
Lðunþ1Þ : n � n: ð4:36Þ
Using (4.33) and (3.23) we obtain:
� Dt
aq

Lðunþ1Þ : n � n ¼ tnþ1 � nþ pn þunþ1 � vlr � unþ1
2

2l
� D unþ1

2

� �
: n � n:
Thus, for the first order boundary condition, we can impose on ðunþ1
2;unþ1Þ:
2lD unþ1
2

� �
: n � n ¼ tnþ1 � nþ pn; ð4:37Þ

2lD unþ1
2

� �
: n � s ¼ tnþ1 � s; ð4:38Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l
¼ v

2
r � unþ1

2: ð4:39Þ
Or, to have second order scheme:
2lD unþ1
2

� �
: n � n ¼ tnþ1 � nþ 2pn � pn�1; ð4:40Þ

2lD unþ1
2

� �
: n � t ¼ tnþ1 � s; ð4:41Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l
¼ un

2l
þ v

2
r � unþ1

2 � un�1
2

� �
: ð4:42Þ
To conclude this section, the full time-splitting algorithm in the presence of traction boundary conditions reads:
Prediction step. Find un+1/2 such that:
q
aunþ1=2 þ bun þ cun�1

Dt
� lDunþ1=2 þrpn ¼ f nþ1; in X; ð4:43Þ

unþ1=2 ¼ 0; on CD; ð4:44Þ

l runþ1=2 þ ðrunþ1=2ÞT
� �

� ~pnþ1Id
� �

n ¼ tnþ1 on CN: ð4:45Þ
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Correction pressure-continuity step. Find (un+1,pn+1) such that:
Dt
aq
r � runþ1 ¼ r � unþ1=2 in X; ð4:46Þ

@

@n
unþ1 ¼ 0 on CD; ð4:47Þ

Dt
aq

Lðunþ1Þ : n � nþunþ1

2l ¼ v
2
r � unþ1

2 þ c
un

l � vr � un�1
2

� �
; on CN : ð4:48Þ
Completed by:
pnþ1 ¼ pn þunþ1 � vlr � unþ1=2 in X; ð4:49Þ

unþ1 ¼ unþ1=2 � Dt
qa
runþ1 in X: ð4:50Þ
The choice of v permits us to switch from the standard incremental scheme (v = 0) to the rotational form v < 2l
d

� �
while the

values of a, b, c move from the first time order to the second:

� a = 1, b = �1, c = 0 for first order Euler time scheme; then ~pnþ1 ¼ pn,
� a ¼ 3

2 ; b ¼ �2; c ¼ 1
2 for second order Backward Difference Formulae time scheme; then ~pnþ1 ¼ 2pn � pn�1.

5. Numerical experiments

We start this section by giving a brief description of the space discretisation and tools for the numerical simulations. Then,
numerical experiments involving the proposed boundary conditions are separated into verification cases on manufactured
solutions of the Stokes equations, and validation on physical cases governed by the Navier–Stokes equations.
5.1. Spatial discretisation and linear solvers

Spatial discretisation is based on the finite volume method. To avoid the well known spurious modes phenomena, the
correction step uses the stable finite volume staggered grid of the Marker and Cells type [27]. In our implementation, pres-
sure unknowns are associated to the cell vertices whereas velocity components are face centred. The approximation of the
prediction-diffusion of the Stokes problem step uses a centred scheme of second order to compute the predicted velocity.
The approach adopted for the treatment of the Navier–Stokes non-linear term (u�r)u involved in the material derivative
of the velocity consists in linearising it by ((2un � un�1).r)un+1 and applying a second-order centred scheme.

In the following simulations, the proposed boundary condition (4.48), which contains high order derivatives in the nor-
mal direction of the boundary, is treated by subtracting it in (3.20) which leads to a formulation involving only tangential
derivatives. As pressure unknowns are associated to the cell vertices, these derivatives are trivial to discretise by a sec-
ond-order centred scheme. This approach would be valid for any orthogonal curvilinear coordinate system.

All the computations are made using the parallel version of a Navier–Stokes solver based on the block-structured mesh
partitioner described in [28]. Finally and in order to solve the linear systems we are using:

� For the prediction step, the iterative BiCGStab method with a point Jacobi preconditioner of the HYPRE library [29].
� For the correction step, the multifrontal sparse direct solver MUMPS [30] for manufactured cases or the GMRES method

with a semi-coarsening geometric multigrid preconditioner [31,32] of the HYPRE library for physical cases.

5.2. Numerical results for the Stokes problem

To assess the error convergence rate of the methods in space and time, we consider two manufactured test cases with
q = 1 and l = 1. The domain is chosen to be X = [�1;1]2 and we enforce the traction boundary condition on the right part
of the box and a Dirichlet boundary condition everywhere else. Exact solutions for uex ¼ ðuex

x1
;uex

x2
Þ and pex are:

� For the homogeneous case (t = 0):
uex
x1
¼ sinðx1Þ sinðx2Þ cosð2pxtÞ;

uex
x2
¼ cosðx1Þ cosðx2Þ cosð2pxtÞ;

pex ¼ �2 cosð1Þ sin 2ðx1 � 1Þ � x2ð Þ cosð2pxtÞ:
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� For the non-homogeneous case, we take the same problem as [20]:
Fig. 1.
case.
uex
x1
¼ cos2 px1

4

� �
sin

px2

2

� �
cosð2pxtÞ;

uex
x2
¼ � cos2 px2

4

� �
sin

px1

2

� �
cosð2pxtÞ;

pex ¼ cos
px1

4

� �
sin

px2

4

� �
cosð2pxtÞ:
We present hereafter a convergence study with a traction boundary condition, homogeneous or not. The error estimator
kuk2

L2ðt�Þ defined in (1.2) is used.
5.2.1. Error convergence rate in space
Most of the research effort made on pressure-correction methods deals with the time convergence rate, since optimal

space one can be reached in presence of Dirichlet boundary conditions on velocity. Nevertheless, in open or traction bound-
ary conditions, spatial convergence rates are limited to Dx for velocity and O(Dx1/2) for pressure. The only known way to
overcome this difficulty in the framework of pressure-correction methods is to switch to the rotational formulation.

In order to study the spatial splitting error we carried out the first numerical experiment with x = 0. The time step is fixed
at Dt = 10�3 and we run the algorithm for different values of Dx. Stationary tolerance is set to 10�12. As long as we attempt to
approximate analytical solutions by a second order scheme, we expect that the errors decay like Dx2. The representative
curves of Figs. 1 and 2 (on the left) show that the convergence rate of the error on the velocity and the pressure are
O(Dx2). We obtain exactly the same result with the first and the second order (in time) versions.

Repeating these tests with the rotational scheme, we obtain a O(Dx2) convergence rate of the error on velocity and pres-
sure whatever the method used (see Figs. 1 and 2 on the right).

As a conclusion on the spatial convergence rate, we can say that the proposed method improves the standard incremental
scheme from O(Dx) to O(Dx2) for the velocity and from O(Dx1/2) to O(Dx2) for pressure, while remaining compatible with the
rotational scheme. The question now is to know if the numerical locking of the incremental scheme also observed for the
error convergence rate in time is overcome, and if the method is still compatible with the rotational formulation.
5.2.2. Error convergence rate in time
To study the time splitting error, we consider the unsteady case x = 1. In Figs. 3 and 4 we plotted for Dx fixed at 1/256 and

for a range of time steps 10�4
6 Dt 6 10�1 the errors (1.2) at t = 2. With the first order proposed boundary condition, the

convergence rate of the error on the velocity and the pressure are around O(Dt). While with the second order boundary con-
dition we ensure a convergence rate of O(Dt2), for the velocity and between O(Dt3/2) and O(Dt2) for pressure. Thus, the con-
vergence rate in the presence of an open or traction boundary condition is now brought to the level observed with the
Dirichlet boundary condition.

We repeated these tests with the rotational scheme. As one can see in Figs. 5 and 6, for the standard boundary condition
(u = 0 on CN) the convergence rate of the error on the velocity and the pressure is between O(D t3/2) and O(Dt2), which are
the same as [22]. With the proposed first order boundary condition, the convergence rate of the error on the velocity and the
pressure is around O(Dt). And finally, with the second order boundary condition we can obtain a clear convergence rate of
the error on the velocity of O(Dt2) and on the pressure of O(Dt2).
Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt = 10�3 for the steady homogeneous



Fig. 2. Spatial convergence rates with the standard incremental scheme (left) and the rotational scheme (right) with Dt = 10�3 for the steady
non-homogeneous case.

Fig. 3. Time convergence rates with the standard incremental scheme at t = 2 with Dx = 1/256 for the unsteady homogeneous case. Velocity (left) and
pressure (right).

Fig. 4. Time convergence rates with the standard incremental scheme at t = 2 with Dx = 1/256 for the unsteady non-homogeneous case. Velocity (left) and
pressure (right).
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Remark 1. In Figs. 5 and 6 (right) there is a saturation of the time error by space error at small time step due to space
discretisation being too coarse. This behaviour is illustrated in Fig. 7 which represents the time convergence for two meshes.
We can see that the finest the mesh is the more saturation is postponed to a smaller time step.



Fig. 5. Time convergence rates with the rotational incremental scheme at t = 2 with Dx = 1/256 for the unsteady homogeneous case. Velocity (left) and
pressure (right).

Fig. 6. Time convergence rates with the rotational incremental scheme at t = 2 with Dx = 1/256 for the unsteady non-homogeneous case. Velocity (left) and
pressure (right).

Fig. 7. Time convergence rates for the unsteady homogeneous case (left) and non-homogeneous case (right) with the rotational incremental scheme and
OBD2 at t = 2 with Dx = 1/128, Dx = 1/256.
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Remark 2. With Dirichlet boundary conditions on all boundaries, rotational scheme improves error level, compared to stan-
dard incremental one, while convergence order remains the same. With the standard traction boundary conditions (u = 0 on
CN), we can note that rotational scheme improves convergence order. With the proposed method, a more usual effect of the
rotational methods which improves only error levels is noted. This can be verified in Figs. 8 and 9.



Fig. 8. Comparison between convergence rates with the rotational incremental scheme and the standard incremental scheme at t = 2 with Dx = 1/256 for
the unsteady homogeneous case. First order (left) and second order (right) boundary conditions.

Fig. 9. Comparison between convergence rates with the rotational incremental scheme and the standard incremental scheme at t = 2 with Dx = 1/256 for
the unsteady homogeneous case. First order (left) and second order (right) boundary conditions.

Fig. 10. Steady state of the bifurcation case. Pressure and streamlines. Eddies are numbered with letters.
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Remark 3. A similar study was carried out with the open boundary condition (homogeneous or not); the norm kuDtkl2ðEÞ (see
(1.1)) was also used. Since the results lead to the same conclusions, they are not shown here.



Table 1
Details of some parameters in the bifurcated tube for different meshes.

Space step size (m) 0.02 0.01 0.005 0.0025 0.00125

Total kinetic energy (kg �m � s�2) 2.0142 � 10+00 2.0025 � 10+00 1.9965 � 10+00 1.9937 � 10+00 1.9923 � 10+00

Top outflux (m2 � s�1) 1.9803 � 10�01 1.9623 � 10�01 1.9505 � 10�01 1.9443 � 10�01 1.9410 � 10�01

Bottom outflux (m2 � s�1) 3.0117 � 10�01 3.0357 � 10�01 3.0490 � 10�01 3.0556 � 10�01 3.0589 � 10�01

Top charge drop (m3 � s�2) 4.2338 � 10�01 4.1251 � 10�01 4.0639 � 10�01 4.0309 � 10�01 4.0131 � 10�01

Bottom charge drop (m3 � s�2) 4.2223 � 10�01 4.1189 � 10�01 4.0607 � 10�01 4.0292 � 10�01 4.0123 � 10�01

Table 2
Extrapolation of some parameters in the bifurcated tube.

Extrapolated value Extrapolation order

Total kinetic energy (kg �m � s�2) 1.9909 � 10+00 1.07
Top outflux (m2 � s�1) 1.9374 � 10�01 0.92
Bottom outflux (m2 � s�1) 3.0623 � 10�01 1.01
Top charge drop (m3 � s�2) 3.9924 � 10�01 0.89
Bottom charge drop (m3 � s�2) 3.9925 � 10�01 0.89

Fig. 11. Spatial convergence rates based on the extrapolation.
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As a conclusion on the error convergence rate in time, the proposed method improves orders of the standard incremental
scheme from O(Dt) to O(Dt2) for the velocity and from O(Dt1/2) to between O(Dt3/2) and O(Dt2) for pressure. It also slightly
improves the rotational scheme to a clear convergence rate of O(Dt2) for velocity and pressure.

5.3. Numerical results for the Navier–Stokes flows

The boundary conditions proposed are tested with two laminar incompressible physical problems: the steady flow in a
bifurcated tube proposed recently by [20] and the unsteady flow past a square section cylinder (see [24,33–36]). The rota-
tional scheme is used with second order time discretisation.

5.3.1. Flow in a bifurcated tube
We deal with the Navier–Stokes equation set on the domain shown in the Fig. 10:
X ¼ ½0;8� � ½�0:5;0:5� n ½0; 0:5� � ½�0:5;0� [ ½1:5;8� � ½�0:1;0:2�f g:
The inflow boundary at {x1 = 0m} is a Dirichlet one set to a Poiseuille flow with a unitary influx. The two outflow boundaries
at {x1 = 8m} are the proposed open boundary condition OBC2, the remaining boundaries being the no-slip condition. Initiali-
sation is made with u0 = 0 and p0 = 0.

Fig. 10 shows steady state for Re = 600 based on the height of the larger section (q = 1 kg m�3 and m = 1/600 m2 s�1). The
flow is composed by six eddies. An infinite series of Moffatt corner vortices (D,E,F) of increasingly smaller amplitude (see



Table 3
Details of eddies characteristics in the bifurcated tube for different meshes.

Dx(m) 0.02 0.01 0.005 0.0025 0.00125

Eddy A x 1.2512 � 10+0 1.2534 � 10+0 1.2574 � 10+0 1.2594 � 10+0 1.2606 � 10+0

Eddy A y 4.7816 � 10�1 4.7686 � 10�1 4.7756 � 10�1 4.7362 � 10�1 4.7306 � 10�1

Eddy A x 5.6036 � 10�1 6.0344 � 10�1 6.8107 � 10�1 7.0257 � 10�1 7.1643 � 10�1

Point 1 x 1.2000 � 10+0 1.1200 � 10+0 1.0850 � 10+0 1.0675 � 10+0 1.0600 � 10+0

Point 2 x 1.3000 � 10+0 1.3400 � 10+0 1.3600 � 10+0 1.3725 � 10+0 1.3763 � 10+0

Eddy B x 1.6449 � 10+0 1.6258 � 10+0 1.6234 � 10+0 1.6225 � 10+0 1.6219 � 10+0

Eddy B y 2.2609 � 10�1 2.2516 � 10�1 2.2237 � 10�1 2.2070 � 10�1 2.1971 � 10�1

Eddy B x �8.4218 � 10+0 �1.0078 � 10+1 �9.1216 � 10+0 �8.5552 � 10+0 �8.2187 � 10+0

Point 3 x 1.7600 � 10+0 1.8100 � 10+0 1.8200 � 10+0 1.8175 � 10+0 1.8163 � 10+0

Point 4 y 1.0000 � 10�1 1.0000 � 10�1 1.0000 � 10�1 1.0000 � 10�1 9.8750 � 10�2

Eddy C x 2.1183 � 10+0 2.0945 � 10+0 2.0844 � 10+0 2.0803 � 10+0 2.0781 � 10+0

Eddy C y �2.1844 � 10�1 �2.1645 � 10�1 �2.1498 � 10�1 �2.1406 � 10�1 �2.1336 � 10�1

Eddy C x 1.0540 � 10+1 1.0180 � 10+1 9.9620 � 10+0 9.8574 � 10+0 9.8142 � 10+0

Point 5 x 2.7800 � 10+0 2.7900 � 10+0 2.7950 � 10+0 2.7975 � 10+0 2.7975 � 10+0

Eddy D x 1.1225 � 10+0 1.1340 � 10+0 1.1384 � 10+0 1.1402 � 10+0 1.1410 � 10+0

Eddy D y �2.9328 � 10�1 �2.9682 � 10�1 �2.9818 � 10�1 �2.9874 � 10�1 �2.9899 � 10�1

Eddy D x �2.7661 � 10+0 �2.7885 � 10+0 �2.7943 � 10+0 �2.7949 � 10+0 �2.7946 � 10+0

Point 6 x 1.4400 � 10+0 1.4700 � 10+0 1.4700 � 10+0 1.4725 � 10+0 1.4750 � 10+0

Eddy E x 5.6857 � 10�1 5.6466 � 10�1 5.6229 � 10�1 5.6094 � 10�1 5.6023 � 10�1

Eddy E y �4.4269 � 10�1 �4.4493 � 10�1 �4.4646 � 10�1 �4.4729 � 10�1 �4.4723 � 10�1

Eddy E x 2.9552 � 10�2 2.6039 � 10�2 2.4409 � 10�2 2.3540 � 10�2 2.3088 � 10�2

Point 7 y �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1 �3.8000 � 10�1

Point 8 x 6.6000 � 10�1 6.6000 � 10�1 6.6500 � 10�1 6.6500 � 10�1 6.6375 � 10�1

Eddy F x � � � 5.0269 � 10�1 5.0316 � 10�1

Eddy F y � � � �4.9732 � 10�1 �4.9684 � 10�1

Eddy F x � � � �6.5702 � 10�5 �1.3642 � 10�4

Point 9 y � � � �4.9500 � 10�1 �4.9375 � 10�1

Point 10 x � � � 5.0500 � 10�1 5.0625 � 10�1
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[37]) appears in the lower left corner due to the sudden expansion of the section. Three other recirculations (A,B,C) are at-
tached to the horizontal walls due to the contraction of the section. The outflux are equal to 0.194 m2 s�1 on top and
0.306 m2 s�1 on bottom, which are qualitatively the same as in [20] where an open boundary condition has also been used.

In order to propose a reference solution, we compute three other parameters characterising the flow:

� The total kinetic energy
ec ¼
Z

X

1
2
qu2 dx:
� The outflux
Q ¼
Z

R
u � n dl:
� The charge drops
Dh ¼ 1
2

Z
L
ðu � nÞ2 dl�

Z
R
ðu � nÞ2 dl

� �
þ 1

q

Z
L

p dl�
Z

R
p dl

� �
;

where L is the left boundary condition, and R the upper or lower right one.

Richardson extrapolation framework [38,39] is used to compute the convergence rates and extrapolated values of these
parameters computed on four meshes of step size h1, h2, h3 and h4 verifying consecutive ratio equal to two. The convergence
rate a and the extrapolated value fext are given by:
a ¼
ln

fh1
�fh3

fh2
�fh4

� �
ln h1

h2

� � ; ð5:51Þ

fext ¼
h3
h4

� �a
fh4 � fh3

h3
h4

� �a
� 1

: ð5:52Þ



Fig. 12. Vorticity contours during one period.

Table 4
Comparison of computed flow metrics.

References St Average CD r.m.s CL

Present study, X1, 6H 0.143235 1.461515 0.153056
Present study, X2, 10H 0.146412 1.474955 0.144166
Present study, X3, 20H 0.147131 1.478540 0.142870
Present study, X4, 30H 0.147167 1.478745 0.142652

Sohankar [34] 0.146 1.46 0.139
Pavlov [36] 0.150 1.51 0.137
Hasan [24] 0.144 1.40 -
Pontaza [33] 0.140 1.48 0.141
Okajima [35] (Exp) 0.143 - -

Table 5
Time convergence.

Time step (s) 2.4 � 10�2 1.2 � 10�2 6.0 � 10�3 3.0 � 10�3 Extrapolated value Extrapolation order

Strouhal number 0.147239 0.147187 0.147170 0.147167 0.147166 1.79
Average drag coefficient 1.479280 1.478870 1.478765 1.478745 1.478739 2.04
r.m.s lift coefficient 0.143079 0.142748 0.142667 0.142652 0.142647 2.10
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Fig. 13. Time convergence rates based on the extrapolation.

Fig. 14. Instantaneous vorticity contours (left) and streamlines (right) for four meshes, from top to bottom: X1, X2, X3 and X4. In order to compare,
isovalues for vorticity contours are the same whatever the domain.
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The values for five meshes are detailed in Table 1 and the convergence rates computed with the four finest meshes are in
Table 2. A first order space convergence rate is obtained, which is caused, we presume, by the singularity of the geometry
at the corners of the domain [40]. We verify on Fig. 11 that results are within the asymptotic convergence zone by plotting



Fig. 15. Comparison of instantaneous vorticity along the line y = 0 between X4 and the three other meshes.
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the errors against the extrapolated solutions. Finally, we propose in Table 3 a detailed description of the eddies for five
meshes: position (x1,y2) and vorticity (x) at the center, and detachment and reattachment points coordinates.
5.3.2. Flow past a square section cylinder
We consider the two dimensional unsteady flow past a square cylinder studied by [34,36,24,33,35] with a normal inci-

dence and Re = 100. The Reynolds number is based on the free-stream velocity (u1 = 1 m s�1), the square width H = 1 m,
the density q = 1 kg m�3 and the viscosity m = 0.001 m2 s�1. We consider four computational domains where the distance be-
tween the outflow boundary condition and the cylinder is, respectively, 6H, 10H, 20H and 30H:

� X1 = [�10.5,6.5] � [�10.5,10.5]
� X2 = [�10.5,10.5] � [�10.5,10.5]
� X3 = [�10.5,20.5] � [�10.5,10.5]
� X4 = [�10.5,30.5] � [�10.5,10.5]

The inflow boundary at {x1 = �10.5 m} is a Dirichlet condition set to a constant horizontal flow, the outflow boundary at
{x1 = 6.5 m}, {x1 = 10.5 m}, {x1 = 20.5 m} or {x1 = 30.5 m} is the proposed open boundary condition OBC2. A symmetry condi-
tion is imposed on the upper and lower boundaries. No-slip condition is enforced on the square obstacle placed at
(x1,x2) = (0,0). The meshes have around two million points with a constant space step of 0.002 m in the sub-domain
[�2,4] � [�2,2]. Step size increases toward the boundaries. The initialisation of pressure is made with p0 = 0. To destabilise
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the solution, an unsymmetrical velocity field is initialised: for x2 > 0 u0 = (1.1,0) m and, for x2 < 0, u0 = (0.9,0) m. The compu-
tations are made with Dt = 0.003 s.

The various global parameters characterising the flow are defined as:

� The lift coefficient CL ¼
2Fx2
qu2
1H

� The drag coefficient CD ¼
2Fx1
qu2
1H

� The Strouhal number St ¼ fH
U1

where f is the shedding frequency. Fx1 and Fx2 are the sums of both pressure and viscous forces in the x1 and x2 direction
around the Cc boundary of the cylinder: ðFx1 ; Fx2 Þ ¼

R
Cc

r:n.
The result is a periodic Bénard-von Kármán vortex street shown on the Fig. 12. Values of the Strouhal number, the lift

coefficient and the drag coefficient are detailed in Table 4, and are in agreement with the literature.
For the last domain X4, we proceed to a time convergence study. Four time steps are chosen with a consecutive ratio of

two. A convergence order around two is measured (see Table 5), in agreement with the formal convergence of the methods.
We check on the Fig. 13 that the solutions are within the asymptotic convergence zone by plotting the errors against the
extrapolated solutions.

Figs. 14 and 15 show the influence of the size of the computational domain on the rotational and the streamlines at the
same phase (first time step just after sign change of the rotationnal at (x,y) = (1,0) m). As in [24], the position of the outflow
boundary condition does not induce distortion of the vortices nor disturb flow around the cylinder. Nevertheless, we can see
some distortions near the boundary condition, which reminds us that the open boundary condition is not a ‘‘universal’’ outlet
boundary condition. These discrepancies are spatially limited to the boundary as shown on the Fig. 15 which represents vor-
ticity profiles along the line y = 0.
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