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This work reports on the application and experimental validation, for idealized geometries, of a multiple-
fluid Navier–Stokes model of waves generated by rigid and deforming slides, with the purpose of improving
predictive simulations of landslide tsunamis. In such simulations, the computational domain is divided into
water, air, and slide regions, all treated as Newtonian fluids. For rigid slides, a penalty method allows for
parts of the fluid domain to behave as a solid. With the latter method, the coupling between a rigid slide and
water is implicitly computed (rather than specifying a known slide kinematics). Two different Volume of
Fluid algorithms are tested for tracking interfaces between actual fluid regions. The simulated kinematics of a
semi-elliptical block, moving down a water covered plane slope, is first compared to an earlier analytical
solution. Results for the vertical fall of a rectangular block in water are then compared to earlier
experimental results. Finally, more realistic simulations of two- and three-dimensional wedges sliding down
an incline are compared to earlier experiments. Overall, in all cases, solid block velocities and free surface
deformations are accurately reproduced in the model, provided that a sufficiently resolved discretization is
used. The potential of the model is then illustrated on more complex scenarios involving waves caused by
multi-block or deformable slides.
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1. Introduction

Landslide generated impulse waves, also referred to as landslide
tsunamis (Ward, 2001) are water waves created by mass flows, either
initiated underwater or subaerial. Such waves may occur both in the
ocean and inmore restrictedwater bodies, such as lakes, reservoirs, or
fjords. Submarine landslides (e.g., Grilli and Watts, 1999, 2005; Watts
et al., 2003; Lovholt et al., 2005), or slumps (e.g., Heinrich et al., 2001;
Tappin et al., 2008), rock/debris flows (e.g., Fritz et al., 2001), volcano
flank collapses (e.g., Ward and Day, 2001; Pararas-Carayannis, 2002;
Gisler et al., 2006; Løvholt et al., 2008; Abadie et al., 2009), and
pyroclastic flows (e.g., Tinti et al., 2006) are among the main
geophysical mechanisms responsible for landslide tsunami genera-
tion. In view of typical slide volumes, tsunami hazard in terms of
coastal run-up is usually limited to the near-field generation area.
However, recent studies (e.g., Masson et al. 2002, 2006; Pareschi et al.,
2006) indicate that volcano collapses involving huge volumes (in the
hundreds of km3 of material) have occurred in the past, which could
have the potential of triggering tsunamis large enough to strike coasts
far away from the generation area, even over transoceanic distances
(e.g., Ward and Day, 2001; Løvholt et al., 2008).

Recent experimental works (e.g., Fritz, 2002; Grilli and Watts,
2005; Liu et al., 2005; Enet and Grilli, 2005, 2007) show that complex
wave fields can be generated by underwater or subaerial slides. The
correct description of these waves near the source is the key to the
accurate modeling and prediction of tsunami propagation, resulting
coastal hazard, and eventual mitigation. Due to the many spatial and
temporal scales involved, in operational tsunami forecast, one
typically uses different types of models to estimate waves generated
near the source, due to one of the potential tsunami generation
mechanisms discussed above, to propagate these over oceanic
distance both on- and offshore (usually using a two-dimensional
(2D) horizontal long wave model), and to predict coastal impact. It is
the purpose of this work to contribute to the improvement of tsunami
source modeling, in the context of tsunami generation by underwater
and subaerial slides.

Landslide tsunami generation includes processes of slide initiation
(or triggering), motion, interaction with water and air, and induced
water surface deformation; the latter sometimes involving breaking
and air entrapment. Landslide triggering, which will be assumed
beyond the scope of this work, is governed by seismology, geology
and marine geomechanics. (In this respect, see for instance the recent
stochastic work of Grilli et al., 2009.) Slide motion depends strongly
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on the material properties as well as on site geometry (e.g., Varnes,
1978; Walder et al., 2003; Grilli and Watts, 2005; Watts et al., 2005).
Interactions between slide and water start upon slide initiation for
underwater events, or when the slide penetrates water for subaerial
cases. Considering the Reynolds numbers involved in such geophys-
ical phenomena, the water flow will be turbulent throughout slide
motion. The air or water flow surrounding the slide has a significant
effect on slide motion, through hydrodynamic drag forces. Such
feedback forces are most significant for subaerial slides, particularly
for violent cases, since air may be entrapped during the penetration
phase (Fritz et al., 2001). Air flow is also susceptible to be of
importance for wave dissipation if breaking occurs (Hoque, 2002).

Many studies have been devoted to studying landslide generated
impulse waves. Analytical solutions have been obtained in some
simple idealized cases (e.g., Noda, 1970; Hunt, 1988; Liu et al., 2003;
Ward, 2001; Haugen et al., 2005). Experimental works have mostly
tried to relate non-dimensional numbers associated with landslide
motion to wave characteristics and associated run-up (Watts, 1997;
Fritz, 2002; Walder et al., 2003; Fritz et al., 2004; Grilli and Watts,
2005; Watts et al., 2005; Liu et al., 2005; Enet and Grilli, 2005, 2007).
Most of these studies are 2D, with a few based on three-dimensional
(3D) experiments (e.g., Liu et al., 2005; Enet and Grilli, 2005, 2007).
Numerical studies of landslide tsunamis have been based on a variety
of models and hypotheses regarding slide geometry and behavior.
Such studies also differ with respect to slide motion, which is either
specified or directly simulated as part of the model solution. Thus, in
simulations by Harbitz (1992), Pelinovsky and Poplavsky (1996),
Grilli and Watts (1999, 2005), Watts et al. (2005), and Enet and Grili
(2005), Lynett and Liu (2005) and Liu et al. (2005), to name a few, the
center of mass motion of a rigid slide was specified based on a
dynamic force balance based on Newton's first law, involving, weight,
buoyancy, friction, hydrodynamic drag and inertia forces, with a few
empirical coefficients based on theories or experiments. This
approach was well validated experimentally for rigid slides of
idealized shape (Enet et al., 2003; Enet and Grilli, 2005, 2007; Grilli
and Watts 2005; Watts et al., 2005). Notably, this approach was used
as part of (full dynamics) fully nonlinear 2D and 3D potential flow
simulations of underwater landslide tsunamis (Grilli andWatts, 1999,
2005; Grilli et al., 2002, 2010; Enet and Grilli, 2005), whose results
were used to develop semi-empirical landslide tsunami sources and
perform successful tsunami case studies (e.g., Watts et al., 2003, 2005;
Tappin et al., 2008). While useful and accurate to study rigid
underwater slides or slumps of simple shapes, and specify approxi-
mate ad hoc sources in tsunami propagationmodels, such an approach
however has severe limitations: (1) it cannot be used in the case of
subaerial landslides, as water–slide interactions are more complex
than the physics included in both Newton's law and inviscid flow
theory; (2) the study of actual scenarios requires experiments to
determine the corresponding empirical added mass and drag
coefficients or to use typical values for entire classes of slides. (This
is discussed in detail in Watts et al., 2005.)

Formulations also differ based on equations used to model fluid
motion. Jiang and Leblond (1992, 1993) used nonlinear shallowwater
equations to describe slide and water motion. This approach was
applied by other authors (Imamura and Imteaz, 1995; Heinrich et al.,
2001) to describe underwater landslide tsunami. But shallow water
equations have intrinsic limitations such as no vertical accelerations,
which in theory prevents them from being applied to most subaerial
cases where strong vertical accelerations do occur. As for potential
flow models, which solve Navier–Stokes (NS) equations for irrota-
tional flows, although these have been showed to be highly accurate
for simulating tsunamis generated by smooth and rigid underwater
slides (e.g., Grilli et al., 2002, 2010; Grilli and Watts, 2005), they
cannot be applied to cases where strong vorticity is created by flow
separation or interface reconnection, which both occur in subaerial
slide cases. In such cases, more sophisticated flow dynamics models
must be used and several attempts were made in this direction.
Among the works in which slide velocity was a priori prescribed,
Heinrich (1992) used NS equations with a Volume of Fluid (VOF)
method to describe tsunamis generated by rigid blocks. The slide
velocity measured experimentally was used as an input in the
numerical model. A good agreement was found between experiments
and simulations. Yuk et al. (2006) presented a numerical study based
on the Reynolds Averaged NS (RANS) equations. Numerical simula-
tions were compared to experimental results obtained by Heinrich
(1992). The slide motion was also prescribed in this case and
reasonably good agreement was achieved. Liu et al. (2005) presented
Large Eddy Simulations (LES) of three-dimensional sliding masses
using the Smagorinsky's subgrid model. Slide motion was specified in
the model from experimental results. Numerical results matched
experimental results quite well in this first 3D simulation of subaerial
rigid slides.

Few numerical models have been proposed to date, which can
describe the full coupling between slide and water, together with the
surrounding viscous/turbulent water flow. Among these, Assier
Rzadkiewicz et al. (1997) proposed a 2D model, which considered a
mixture of water and sediment. The free surface motion was
represented by a VOF algorithm and the sediment was considered
as a Bingham fluid. Rigid slide motion was implicitly obtained by
setting a very high value of the yield strength in the rheological model.
The experiments of Heinrich (1992) were simulated and free surface
as well as slide motion matched experimental values quite well.
Monaghan and Kos (2000) and Panizzo and Dalrymple (2004) used a
Smoothed Particle Hydrodynamics (SPH) method to simulate land-
slide generated waves. In Monaghan and Kos (2000), the waves were
generated by the vertical drop of a rigid square block. Simulations
were compared to experiments (also reported later in this paper) and
shown to be able to reproduce block motion, wave height, and also
features of the complex free surface flow close to the solid. Note that a
comparison of VOF and SPHmethod for this case was reported by Yim
et al. (2008).

Air motion has rarely been considered in subaerial landslidemodels.
Among the authors who have included this effect, Mader and Gittings
(2002, 2003) and Gisler et al. (2006) solved compressible multi-
material NS equations, with a Continuous Adaptive Mesh Refinement,
and Quecedo et al. (2004) solvedNS equations with indicator functions,
using the Finite ElementMethod. The latter authors applied theirmodel
to the Lituya Bay case study and qualitatively compared their results to
available experimental measurements.

Here,we present a newadvancedmodel, referred to as Thetis, based
on Direct Numerical Simulation (DNS) of NS equations. Water, air, and
slide are treated as fluids, whose interfaces are tracked using the VOF
method. A penalty approach is used to implicitly compute slide
motion. By contrast with earlier published work, we concentrate here
on validating the implicit computation of slide–water interactions,
which yields slide motion, for the more idealized case of non-
deformable slides. Although actual slides, especially subaerial ones,
are deformable, rigid slides have more often been used in laboratory
experiments, in an attempt to simplify the problem and provide
reference data for numerical models (e.g., Liu et al., 2005; Enet et al.,
2003; Enet and Grilli, 2005, 2007). Here, similarly, we use such data to
validate the newly proposed model. Once this is done, the model,
which is general, can be applied to deformable slides. Validation of this
latter aspect, however, is still in progress and only a few illustrative
results with deformable slides are shown at the end of the paper.
Finally note, earlier potential flow simulations for rigid and deforming
underwater slides, indicate that key features of tsunami generation are
mostly governed by the early slide kinematics, and particularly the
initial slide acceleration, which is not significantly affected by large
deformations that may occur later during slide motion (Grilli and
Watts, 2005; Watts et al., 2005). Hence, studying rigid slides has
intrinsic merit for such more general underwater slide cases.
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The paper is organized as follows: in Section 2, we present the
model equations and numerical methods, in Section 3, we present
validation cases, and finally Section 4 is devoted to a discussion.

2. The model

In the present applications, we perform direct numerical simula-
tions (DNS) of flows composed of three separated phases: water, air
and slide. This approach, which does not use a subscale turbulence
model, is justified since, during a rapid generation process, subaerial
(not too elongated) landslide impulse waves are to a large extent
generated by pressure forces and turbulence effects are expected to be
of second-order as compared to other processes. Thus, even though all
the scales of turbulence are not well resolved in the computations, the
simulated waves are nevertheless expected to be realistic enough to
allow for an accurate prediction of landslide tsunami sources.

The representation of turbulence by LES, using the Mixed Scale
Model of Sagaut (1996) and Lubin et al. (2006), was also tested, but
found to yield slightly less accurate result. In fact, we found that the LES
method was adding spurious dissipation to the already significant (and
thus sufficient) numerical dissipation inherent to the model algorithm.

For simplicity, in the present applications, all phases are
considered to be Newtonian fluids, although standard non-Newtonian
behavior is also implemented in themodel. Following Kataoka (1986),
we consider multiphase flows using a single fluid formulation
governed by NS equations, in which density and viscosity are
calculated as a function of location:

∇⋅u = 0 ð1Þ

ρ
∂u
∂t + u⋅∇ð Þu

� �
= �∇p + ρg + ∇⋅ μ ∇u + ∇ut

� �� �
ð2Þ

in which ui and p are the velocity and pressure.
The above governing equations are completed by two advection

equations specifying that each interface in the model moves with the
fluid velocity:

∂Cw

∂t + u⋅∇ð ÞCw = 0 ð3Þ

∂Cs

∂t + u⋅∇ð ÞCs = 0 ð4Þ

where Cw is the local volume fraction of water (i.e., 1 if water is
present and 0 otherwise) and Cs the local volume fraction of the slide
material (similarly defined). Air is assumed to fill every cell in which
Cw and Cs are 0.

The local fluid density and viscosity (w for water, s for slide and a
for air) are defined as a function of the volume fractions by:

ρ = ρw μ = μw if Cw N 0:5
ρ = ρs μ = μs if Cs N 0:5
ρ = ρa μ = μa else

ð5Þ

(Note that, although the method is detailed here for three fluids,
this does not represent a limitation and one could easily apply it to k
fluids, by solving (k−1) advection equations.)

In the model, we use two methods of fluid–fluid interface rep-
resentation and time updating:

1. The first method is the Piecewise Linear Interface Calculation
(PLIC) algorithm (Young et al., 1982; Li, 1995; Abadie et al., 1998;
Liu, 1999; Breil and Caltagirone, 2000), which is based on a mixed
Eulerian–Lagrangian formulation. In the PLIC algorithm, we first
define a piecewise linear approximation of the fluid interfaces,
using values of Cw and Cs integrated over the neighboring mesh
cells. Then, the position of the linear segments representing fluid
interfaces is updated by advecting these based on an interpolation
of the local fluid velocity. Finally, updated values of the water and
slide volume fractions are calculated, based on the new interface
locations within each cell. This algorithm is non-diffusive, which
implies that interfaces remain discontinuous all along the
computations. This method is hereafter referred to as NS-PLIC.

2. The second method is the Total Variation Diminishing (TVD)
superbee scheme (LeVeque, 1990; Vincent and Caltagirone, 1999).
In this case, Eqs. (3) and (4) are directly solved using a Lax
Wendroff Scheme, modified by using the TVD theory. The resulting
scheme is second-order where the volume fraction is regular and
first-order close to discontinuities, which allows to preserve sharp
discontinuities through time updating, without triggering oscilla-
tions such as observed with higher-order schemes. This method is
hereafter referred to as NS-TVD.

With both methods, updated local values of density and viscosity
are calculated for each cell containing an interface, using Eq. (5), in
which Cw and Cs are replaced by the corresponding cell volume
fractions. Both methods' performance will be compared in the
applications for three test cases.

To solve the velocity/pressure coupling in the equations, we use the
augmented Lagrangian method (Fortin and Glowinski, 1982), a
constrained minimization method that was successfully applied to
turbulent multiphase flows (Lubin et al., 2006; Vincent et al., 2007a,b).
Fortin and Glowinski (1982) give numerous applications of this method
to the solution of partial differential equations, particularly Stokes and
NS equations, formulated as a velocity–pressure problem requiring the
computation of a saddle point (u,p), associated with the augmented
Lagrangian of the problem (i.e., a minimization–maximization). Specif-
ically, in the equations, pressure is treated as a Lagrangianmultiplier and
the fluid incompressibility constraint is implicitly specified into the
momentum equations. The (u,p) saddle point is iteratively computed
using an Uzawa algorithm, until, for the k-th iteration (uk,pk), the
divergence of the velocity field, div ubε, with ε small:

Initialization

uk=0 = un
; pk=0 = pn

Iterations
for k=0, K−1
computation of uk+1 solution of

ρn
uk + 1

Δt
+ uk⋅∇uk + 1

 !
= ρng−∇pk

+ ∇⋅ μð Þ ∇uk + 1 + ∇tuk + 1
� �h i

+ ρn
un

Δt

� �
+ α∇ ∇⋅uk + 1

� �

ð6Þ

updating of pk+1 with:

pk + 1 = pk−β⋅uk + 1

Solution

un + 1 = uK
;pn + 1 = pK :

The choice of parameters α and β in the algorithm is crucial for
achieving convergence in incompressibility. In practice, for single fluid
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problems, the use of a constant value of α, on the order of ρ provides
an accurate solution of both momentum and incompressibility
equations. Whenever several fluids with large density gradients are
simulated, however, αmay have to vary in time and space; otherwise
the flow in one of the fluids is in certain cases not properly solved for
(Lubin et al., 2006). Here, we automatically compute α (x,t) as
detailed in Vincent et al. (2007b), based on an analysis of the algebraic
linear system resulting from the discretization of the equations of
motion. Accordingly, at each time step, the best local value of α is
determined in order to always be 2 or 3 orders of magnitude larger
than the other terms in Eq. (6); then β is set equal to α. We found that
1 to 4 iterations must be performed at each time step to achieve low
velocity divergence levels.

The rigidity of solid zones is achieved by specifying a sufficiently
large value of the viscosity (values of 104 to 1010 Pa s were typically
used). This so-called viscous penalty approach, which belongs to
fictitious domains methods (Peskin, 1977), has been validated in the
model for the computation of the free fall of a solid sphere at
moderate to high Reynolds numbers (Vincent et al., 2007b;
Randrianarivelo et al., 2005). This method is applied in the present
paper and validated for a more complex three-phase flow.

The above equations are discretized on a staggered structured grid,
using the finite volume approach. Advection terms are expressed in a
hybrid Upwind-Centered scheme and viscous terms are defined using
a second-order centered scheme. Higher-order methods such as the
centered and the QUICK schemes were found to be unstable or to
induce oscillations in the velocity field, respectively.

The resulting linear algebraic system of equations obtained for
each time step is solved using the MUltifrontal Massively Parallel
Sparse direct solver (MUMPS) by Amestoy et al. (2000). This solver is
five times faster than our implementation of the BiCGstab iterative
solver associated to an ILU preconditioner (Van der Vorst, 1992) and
ensures an accuracy close to that of the computer.

3. Validation cases

3.1. Landslide motion in air and water

The motion of a subaerial landslide is typically divided into three
phases: (i) after triggering, the slide propagates over some distance,
only interactingwith air; (ii) the slide penetrateswater, while a part of
it still interacts with air; and (iii) the whole slide becomes submerged
in water and its effect on the free surface decreases with time.

In this section, we aim at separately validating themodel for the first
and third phases of motion of a subaerial rigid slide. The second phase
will be addressed in the next section (Section 3.2). For those twophases,
the slide is only surrounded by onefluid, either air orwater, and the free
surface influence on its motion is small and hence can be neglected in
this validation. Note that basal friction, which may play an important
role in this phenomenon in natural conditions, is neglected here to focus
on slide/water interaction phenomena. The effect of basal friction could
easily be introduced in themodel by simply reducing gravity in the rigid
slide by an amount corresponding to global frictional effects. Fig. 1
shows the fluid domain considered in these computations, which
consists of a rectangle of length Ld=7m and height Hd=0.75 m. The
Fig. 1. Sketch of the sli
slide shape is semi-elliptical, with length L=1m, and thickness
T=0.25, similar to the model slide used in the earlier submarine/
subaerial landslides experiments of Grilli and Watts (1999, 2005),
whichwill be used as a reference to estimate hydrodynamic parameters
such as drag or addedmass coefficient. As shown in Fig. 1, to simulate a
slidemovingdown aplane slope in themodel, the gravity vector is set at
an angle α with respect to the z direction.

The rigid slide law ofmotion is governed by the following equation
expressing the balance between slide acceleration, fluid added mass,
gravity, buoyancy and drag (e.g., Grilli and Watts, 2005):

m + maddð Þx:: = m−ρVsð Þg sin αð Þ−1
2
ρCDTẋ

2
: ð7Þ

In Eq. (7), m is the slide mass, madd the inertia effects of the
surrounding fluid on slide motion, expressed as a fluid added mass,
which for a semi-elliptical shape in an infinite fluid is equal to 1/2ρπT2,
with ρ denoting the fluid density, Vs the slide volume and CD the sum
of the pressure and friction drag coefficients (CD∼0.2 after White,
2002).

Slide density ρs is here arbitrarily set to 2000 kg/m3. When the
slide moves in the air, added mass, buoyancy and drag forces are
assumed to be negligible with respect to gravity, and Eq. (7) becomes:

mx
::
= mg sin αð Þ ð8Þ

which yields a simply accelerated slide motion down the slope:

x tð Þ = 1
2
g sin αð Þt2: ð9Þ

3.1.1. Slide motion in air
We simulated the aerial phase (i) of a semi-elliptical 2D slide

moving down an incline using the NS-TVD model, for four slope
angles α=15°, 30°, 45° and 60°. The computational grid had 700×75
cells, yielding non-dimensional grid sizes of Δx/L=Δz/L=0.01. Free
slip boundary conditions were specified on every boundary, except
along the upper boundary over which an open boundary condition
was applied to the velocity. Initially, the slide center of mass was
located at X0=1 m, and simulations were stopped when it reaches
Xg=4 m, so that the velocity field is not affected by the right side
boundary condition.

Slide viscosity was set to 1010 Pa s, yielding a quasi-rigid behavior.
The volume tracking was performed using the TVD superbee scheme.
Twenty iterations with a very small constant time step of 0.01 s were
first performed to ensure a proper initiation of slide motion, then time
steps were computed so that the maximummesh Courant number be
less than 1.

Fig. 2 compares model results to Eq. (9) for the four simulated cases.

The agreement is quite good, and RMS differences (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
ðxthi−xsii Þ2 = n

s
)

between theoretical and simulated center of mass motions are found to
monotonically increase from 8.10−3 to 11.10−3 mwith increasing slope
values. After moving three times its length, theoretical and simulated
locations of the slide center ofmass only differ by about one grid size (i.e.
de case simulated.



Fig. 2. 2D NS-TVD simulations for a semi-elliptical rigid body surrounded by air sliding
down an incline. Time evolution of the center of mass abscissa. (•): analytical Eq. (9),
(—): NS-TVD results for α=: (a) 15°, (b) 30°, (c) 45°, and (d) 60°.

Fig. 4. Semi-elliptical rigid body sliding down an incline underwater (α=45°). Time
evolution of slide velocity. (•): obtained by solving Eq. (7) for theoretical values of
added mass and drag forces. (—) simulated with the NS-TVD for decreasing cell sizes.
(a) Δx*/L=0.02, (b) Δx/L=0.01, (c) Δx/L=0.005, and (d) Δx/L=0.003.
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0.01 m). This indicates that the slide aerial stage is properly simulated in
themodel. Fig. 3 displays the flow streamlines at t=1 s within the slide
as well as in the surrounding air for the case α=30°. Within the slide,
one can see that the flow is uniform and streamlines are rectilinear,
confirming that the slide behaves as a rigid body. At the end of the
simulations, the slide length variation is less than 10−8 m and themean
relative velocity difference within the slide is about 10−9 during
simulations.

3.1.2. Slide motion in water
We now simulate the underwater phase (iii) of slide motion,

where the force balance is described by the complete Eq. (7), in which
each force now plays an important role. Assuming the theoretical
values indicated above for the added mass and drag coefficient, slide
motion can be calculated as a function of time by integrating Eq. (7),
which is done using a fourth-order Runge–Kutta scheme, with a time
step of 0.001 s. Fig. 4 compares the theoretical time evolution of slide
velocity to NS-TVD model results obtained this way. Numerical
parameters are identical to those used in the aerial phase, except that
it was found, the Courant number must be less than 0.2 to ensure
numerical stability and no deformation of the slide shape. Such
spurious deformations would strongly affect hydrodynamic drag and
hence slide motion.

To illustrate model convergence towards the theoretical solution,
four decreasingmesh sizes were successively used in simulationswith
Δx*=Δx/L=Δz*=Δz/L=0.02, 0.01, 0.005 and 0.003, and the slope
angle was set to α=45°. Note, the slide center of mass velocity is
obtained at each time step by taking the average of “fluid” velocities
computed within the slide. As before, simulations were stopped when
the slide traveled three times its length.

In Fig. 4 we see that NS-TVD model results clearly converge
towards the theoretical solution, when the computational grid is
Fig. 3. Slide contour and flow streamlines obtained with the N
increasingly refined (and time step adjusted accordingly based on the
mentioned Courant condition). Relative errors with respect to the
theoretical solution, calculated at t=0.8 s, are 11.1%, 7.5%, 3.7% and
1.3% for Δx*=0.02, 0.01, 0.005 and 0.003, respectively. At t=1.5 s,
errors have increased to reach 20.4%, 14.1%, 8.7% and 5.6%. Thus, as
could be expected, we find that mesh size plays a key role in ensuring
accurate numerical results for the underwater slide motion. The fairly
slow convergence rate is likely related to the accurate computation of
drag forces in the model, which is known to be difficult to achieve in
NS models. Usually, accurate drag force computations require using
extremely finemeshes, closelymatching the body boundary geometry
(Gumusel et al., 2006). In the present case, the flow is created by slide
motion in a simple Cartesian grid, which hence requires very fine cells.
Fig. 5 shows water velocity vectors calculated around the semi-
elliptical slide in the slide moving frame of reference in the finer mesh
case. (Note, only about 3% of the grid nodes are represented in Fig. 5
for clarity sake.) We see, a fraction of the water volume surrounding
the slide is moving at the slide speed (white area). This water volume
is related to the added water mass modeled in Eq. (7). The shear flow,
responsible for viscous drag is clearly visible just outside the slide
boundary. Behind the slide, we observe a short wake with a flow
recirculation due to flow separation.

Finally, slightly more accurate results were obtained in this test
case when using the NS-PLIC method in the same discretization
(Fig. 6). This is likely because the PLIC algorithm of interface
reconstruction allows for a finer description of the interface geometry,
which cannot be achieved by a direct method such as TVD superbee.
Errors on slide velocity calculated at t=0.8 s using the NS-PLIC
method were 10.6%, 4.9%, 1.6% and 0.2%, for Δx*=0.02, 0.01, 0.005
and 0.003, respectively. At t=1.5 s, after a distance traveled of about
three slide lengths, errors on slide velocity reached 16.8%, 10.6%, 6%
and 3.6%, respectively.
S-TVD model for the case of Fig. 2 with α=30° at t=1 s.



Fig. 5. Semi-elliptical rigid body sliding down an underwater incline (α=45°). Slide motion is left to right. Snapshot of water velocity vectors in the moving frame at t=0.5 s in the
finer mesh case using the NS-TVD model.
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3.2. Strong slide interaction with the free surface: Russel's
wave generator

In this section, we address model validation for the more complex
phase (ii) of water penetration, during which strong interactions
occur between the slide and the free surface. Such penetration
involves a highly dynamic force balance between slide weight, minus
the time varying buoyancy force, and slide–fluid interaction forces,
which strongly depend on free surface deformation. To validate the
model in this case, we first compared simulation results to detailed
experiments of Monaghan and Kos (2000), for a rectangular solid
block falling vertically in the water. Such experiments qualitatively
reproduce the “wave generator” described by Russel (1844), who
witnessed the generation of a quasi-solitary wave in a shallow canal of
constant depth, by a an abruptly stopping barge. The experiment was
performed in a 9 m long 2D flume, with water depth D (Fig. 7). A
38.2 kg rectangular block (0.4 m tall, 0.3 m long and 0.39 m wide),
placed just above still water level, was released at initial time t=0.
Experiments were repeated for D=0.288, 0.210, and 0.116 m; in each
case, the block vertical position and resulting free surface deformation
were measured as a function of time (the latter at a wave gage located
1.2 m from the leftward extremity of the flume).

In experiments, the main flow feature caused by the falling block, is
the development of a vortex at the block lower right corner; this is
followed by the development of a small plunging breaker on the free
surface, near the block right side. As time increases, the vortex detaches
Fig. 6. Same case as Fig. 4 but using NS-PLIC model. (a) Δx/L=0.02, (b) Δx/L=0.01,
(c) Δx/L=0.005, and (d) Δx/L=0.003.
from the block and advects rightwards, while gradually losing strength.
Fig. 8 shows corresponding simulations with the NS-PLIC model, in
which, as in experiments, the blockwas forced to have a verticalmotion
by setting its horizontal velocity to zero, and was slightly shifted
rightwards (by 25 mm). The model had a constant mesh sizeΔx0 (resp.
Δz0 for 0≤x≤0.5 (resp. 0≤z≤0.31)) and then an exponentially
increasing grid size over the rest of the domain, to x=9m. The
followingmesh sizes were tested:Δx0/L=Δz0/L=0.02, 0.01 and 0.005,
where L is block length. A free slip conditionwas specified along all solid
boundaries. Block viscosity was set to 1010 Pa s, except for the finest
mesh, for which accurate results could only be obtained using a smaller
viscosity of 104 Pa s. Time stepwas set to 5.10−3 s for the first iterations
and then automatically calculated so that themeshCourant numberwas
less than 0.3 after this.

Measurements of block velocity in Fig. 9 show an initial increase,
from t=0 to about 0.4 √(gD) until the block has penetrated half the
channel depth, followed by a decrease to 0.

Fig. 8, shows snapshots of streamlines and fluid interface locations,
computed during the fall of the block. Within the block, streamlines
are rectilinear, confirming that the penalty method truly yields a rigid
body-like velocity field. Overall, the block geometry is well conserved
during motion. As observed in Monaghan and Kos' (2000) experi-
ments (as well as in their SPH simulations), a strong vortex is created
at the lower right corner of the block during water penetration, which
is then advected rightwards by the flow. Two large vortices are also
generated duringmotion in the air at the block top corners. Snapshots
of interfaces between water and air display the wave generation and
initial stages of propagation. The first wave, which is the highest, is
directly a function of the water volume displaced during block
penetration. At t=0.28 s (Fig. 8b), the simulated free surface shows a
(backward) plunging breaker impacting the lower right part of the
block; this was also observed by Monaghan and Kos in both their
experiments and simulations. Note, the latter flow feature was quite
difficult to accurately simulate using themethodology presented here.
After various trials, we elected to solve Eq. (3) with the TVD scheme
and Eq. (4) with the PLIC algorithm, using a small Courant Number of
0.3. The PLIC method is required for its accuracy in describing
interface geometry, while the use of the TVD scheme results from
practical stability reasons. In Fig. 8b, the plunging jet is seen to break
up into small droplets, which is an unfortunate effect, because when
such small water droplets travel with high velocity in the air, it
becomes harder to accurately solve NS equations and, sometimes,
computations might be even divergent. In particular, this is the case
when using the PLIC algorithm to describe such droplets, while the
TVD scheme smoothes out these features as a result of numerical
diffusion in the direct solution of Eqs. (3) and (4).

The block velocity, simulated using the NS-PLIC and NS-TVD
methods with coarse to fine meshes, is compared to Monaghan and
Kos' (2000) experiments in Fig. 9. Intermediate mesh results are not



Fig. 7. Sketch of Russel's wave generator from Monaghan and Kos' (2000) experiments.
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presented for sake of clarity, but these just fell within the other curves.
Experimental error bars are also shown on the plot. Overall, simulation
results agree well with measurements. The block velocity rapidly
increases, until it reaches amaximum value of about 40% the long wave
celerity, and then decreases to 0 when the block reaches the channel
bottom. Monaghan and Kos reported oscillations of the simulated
velocity, whichwere not well resolved in themeasurements, due to the
technique employed. We do not observe such oscillations in our
simulations.When comparing the two interface tracking algorithms,we
seeNS-PLIC simulates a slightly slower block velocity thanNS-TVD,with
a maximum value of 0.407c for PLIC and 0.423c for TVD (c =

ffiffiffiffiffiffiffiffiffiffi
gDð Þp

being the wave celerity) using the finestmesh. For bothmethods, using
a finer mesh leads to an increase in maximum velocity.

Table 1 shows a comparison of simulated and measured wave
heights for three channel depths. Simulation results obtained using
NS-PLIC andNS-TVD, are given for depthD=0.21 m, for threemeshes.
For other depths, only results using NS-PLIC and the intermediate
mesh size are reported. The accuracy of measured wave heights is
about 10% for the three depth cases. Hence, the maximum error in
simulations cannot be verified within less than 10% against experi-
ments. Considering for instance the first result obtained with NS-PLIC
in the coarsest grid, simulation results are within the experimental
error bar. The maximum discrepancy of simulated to measured wave
height is 17.8% and theminimum is 0%. Decreasing grid size in NS-PLIC
simulations does not further improve accuracy; overall, results are
comparablewithNS-TVD, except that better results are obtained in the
Fig. 8. Snapshots of NS-PLIC streamlines and fluid interfaces for the case of Fig. 7 at t=:
intermediate water case and worse results in the finer grid case.
Simulations of other depth cases approximately lead to the same
values of minimum and maximum discrepancies.

For the caseD=0.21 m,we also give values ofH and B at t=0.28 s as
defined in Fig. 8. Here experimental measurements are more accurate
and thus numerical results can be validated more precisely against
these. In all cases, themeasuredH is reproduced by themodel within at
best 8% and at worst 14%. The discrepancy is larger for B, which was
measured less accurately. This parameter is obtained with an accuracy
varying between about 4 and 18%.We also note thatMonaghan and Kos
(2000) found very similar error values based on their SPH simulations.

3.3. Rigid triangular body sliding down an incline

3.3.1. 2D case — Heinrich (1992) experiments
Heinrich (1992) performed experiments, in which a triangular

(0.5 m×0.5 m) rigid block with a 105 kg mass freely slid down a 45°
slope (Fig. 10). The water depth was 1 m and the top of the block was
initially located 1 cm below the undisturbed free surface. Free surface
displacements induced by the sliding block were measured as a
function of time, using an optical camera. In the model, the physical
domain is represented by an 8 m×8 m square, in which gravity is
inclined at 45° from vertical (Fig. 11). This particular configuration
allows for easily setting the free slip boundary condition under the
slide. The channel bottom is simulated as a porous medium, for which
porosity tends to zero, thus imposing zero velocity for the fluid within
(a) 0.1 s, (b) 0.28 s, (c) 0.42 s and (d) 0.61 s. Model grid size is Δx0/L=Δz0/L=0.01.



Fig. 9. Case of Fig. 7. Normalized vertical block velocity as a function of vertical location.
(•): Monaghan and Kos (2000) experiments, (···) NS-PLIC Δx0/L=Δz0/L=0.02, (-·)
NS-PLIC Δx0/L=Δz0/L=0.005, (--) NS-TVD Δx0/L=Δz0/L=0.02, (-) NS-TVD Δx0/
L=Δz0/L=0.005.

Fig. 10. Sketch of Heinrich's (1992) experiment for a solid triangular block sliding down
an incline.
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it. The computational grid consists of regular cells, with Δx′/L=Δz′/
L=1.8% (L=0.707 m), for x′b5 m and z′b5 m, exponentially increas-
ing in size beyond those dimensions. Time step is set to 0.005 s for the
first 50 iterations and then automatically computed using a maximum
mesh Courant number of 0.5. Free slip boundary conditions are
specified for the velocity components along all boundaries.

The slide is made rigid by specifying a large viscosity of 1010 Pa s.
Interfaces are tracked using the TVD superbee method. Computations
were also carried out using NS-PLIC for comparison, but wave
breaking generated by slide motion induced the formation of small
Table 1
Wave height and other free surface features. Comparison between Monaghan and Kos
experimental values and model results. Experimental wave height values are reported with
their relative accuracy in meter and percentage (in parenthesis).

Monaghan
and Kos (2000)
experiment

NS-PLIC NS-TVD

D=0.21 m
Wave height (m)
Min and max
errors in %

0.092±0.01
(10.9%)

0.0966 (Δx0/L=0.02)
0–17.8%
0.1092 (Δx0/L=0.01)
7–33%
0.1011 (Δx0/L=0.005)
0–23%

0.0982 (Δx0/L=0.02)
0–19.8%
0.1058 (Δx0/L=0.01)
3.7–29%
0.1065 (Δx0/L=0.005)
4.4–29.9%

D=0.288 m
Wave height (m)
Min and max
errors in %

0.093±0.01
(10.7%)

0.1024 (Δx0/L=0.01)
0–23.4%

D=0.116 m
Wave height (m)
Min and max
errors in %

0.109±0.01
(9.17%)

0.0967 (Δx0/L=0.01)
2.3–18.7%

D=0.21 m
H (m)
Min and max
errors in %

0.333±0.01
(3%)

0.295 (Δx0/L=0.02)
8.7–14%
0.294 (Δx0/L=0.01)
9–14.3%
0.297 (Δx0/L=0.005)
8–13.4%

0.3 (Δx0/L=0.02)
7.1–12.5%
0.298 (Δx0/L=0.01)
7.7–13.1%
0.294 (Δx0/L=0.005)
9–14.3%

D=0.21 m
B (m)
Min and max
errors in %

0.303±0.02
(6.6%)

0.264 (Δx0/L=0.02)
6.7–18.3%
0.27 (Δx0/L=0.01)
4.6–16.4%
0.272 (Δx0/L=0.005)
3.9–15.8%

0.264 (Δx0/L=0.02)
6.7–18.3%
0.27 (Δx0/L=0.01)
4.6–16.4%
0.27 (Δx0/L=0.005)
4.6–16.4%
water droplets with high velocity, which heavily slowed down
computations because of the CFL criterion. Nevertheless, results in
terms of slide velocity and free surface deformation were very similar
with both methods.

Fig. 12 displays a sequence of snapshots showing computed fluid
interfaces and flow streamlines. The duration of slide motion is about
1 s, before the slide reaches the porous obstacle and stops (the lack of
streamlines in the last two snapshots shows that the slide motion has
effectively stopped). Overall, slide rigidity is well achieved, except at
slide corners where small local deformations are observed. An
elevation wave is created by the water displacement induced by the
slide. Its crest is clearly visible at t=1 s, at the center of a streamline
cell in the right half of the domain. A second wave is then generated
over the slope, in the run-up region. The trough between the first and
second waves is also visible at t=1 s. The second wave breaks
between t=1 s and 1.5 s, leading to a fairly irregular free surface in
this zone and to the generation of two small vortices under the wave.
Then, the wave keeps propagating rightwards. A large vortex is also
created at the right corner of the slide during motion, which then
interacts with the vortices induced by wave breaking (Fig. 12d).

Numerical results are compared to Heinrich's experiments in
Figs. 13 and 14. Fig. 13 compares the simulated and measured vertical
displacements of the slide center of mass. Overall, the agreement is
quite good with a RMS difference of 9.6 10−3 m. Fig. 14a,b compares
computed and (digitized) experimental free surfaces, at respectively
t=0.5 and 1 s. We see that the model reproduces well the overall
behavior of the free surface displacement during the block sliding. In
the propagation region (rightward part of the domain), the agreement
between computed and measured free surfaces is seen to be very
good. Main discrepancies appear near the slide, in the wave genera-
tion region. This was already the case in earlier numerical work at-
tempting to simulate these experiments (Heinrich, 1992; Yuk et al.,
2006). Let us also note that the use of coarser meshes, such as Δx′/L=
Δz′/L=3.6% or even 7.2% is sufficient to achieve accurate results.

3.3.2. 3D case — Liu et al. (2005) experiments
Wu (2004) and Liu et al. (2005) carried out experiments in a large

scale flume to study the wave field and subsequent run-up generated
by a sliding three-dimensional rigid wedge. These experiments were
also selected as a benchmark for numerical models, as part of the 3rd
international workshop on long wave run-up models (Catalina, June
2004) as well as within the European project TRANSFER (Tsunami
Risk And Strategies For the European Region). Fig. 15 shows a sketch
of the experimental setup. Free surface elevation and run-up were
measured at different locations, close to the generation area. Slide
time evolution was also provided.

Liu et al. (2005), performed 3D-LES simulations, using the PLIC
VOF method, and compared numerical results to their experimental
data. They prescribed the slide motion in the model, based on the
measured slide displacement, with the slide being close to the free
surface at initial time. Upon slide release, free surface deformation is



Fig. 13. Case of Fig. 10. Time evolution of vertical slide displacement. (•): Heinrich's
(1992) experiments, (—): NS-TVD model simulations for a single rigid triangular block.

Fig. 11. Sketch of the domain used in the computations for case of Fig. 10.
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strong and wave breaking is susceptible to occur in certain cases.
Complex flow patterns occur in all cases.

In this work, we simulated Liu et al.'s cases corresponding to
different submergence values but, instead of prescribing slide motion,
we solved for the coupling between slide and water. As in earlier
applications, the rigid wedge was modeled as a Newtonian fluid of
large viscosity (105 Pa s).

Here, we present in detail a case corresponding to one of the
benchmark cases in which the slide initial emergence is Δ=−0.1 m
and slide density is 2.14. Like in the preceding section, x′ is in the slope
direction, z′ is perpendicular to the slope plane (gravity being in this
case inclined by 26.56° with respect to z′), y=y′ is the longshore
direction. Due to symmetry with respect to the middle vertical plane,
the computational domain is half the experimental flume (including
Fig. 12. Snapshots of fluid interfaces and flow streamlines in the case of Fig. 10, for a rigid slid
run-up gage 1 and wave gage 1). Two numerical grids were tested to
assess discretization effects on slide motion and subsequently on free
surface deformation. Both grids were irregularly distributed over x′
and z′ to account for the need for finer resolution close to the genera-
tion zone. The first grid (mesh 1 with 62×76×24 cells) is comparable
to the mesh used in Liu et al. (2005). The finest grid cell size is Δx′=
0.039, Δz′=0.0196, Δy′ being constant and equal to 0.077. For the
second mesh used (mesh 2 with 170×100×120 cells), the finest grid
cell size is Δx′=Δz′=0.015, Δy′was constant and also equal to 0.015.
Non-dimensional finest grid sizes are respectively Δx′/L=Δz′/L=
3.8% for mesh 1 and 1.4% for mesh 2 (with L=1.017 m). High
resolution 3D computations are very time consuming and paralleliza-
tion of our model was required to keep computing times within
reasonable bounds. For example, computations for the finest mesh
take around 4 days to run on 8 processors (quadricore 3 GHz) for
5000 iterations. Before the parallelization of the model, such
computations would last four times longer.
e (μ=1010 Pa s) and using NS-TVD model at t=: (a) 0.5 s, (b) 1 s, (c) 1.5 s, and (d) 2 s.



Fig. 14. Case of Fig. 10. Free surface deformation at t=0.5 s and t=1 s. (•): Heinrich's
(1992) experiments, dot filled contour: NS-TVD model simulations using a single rigid
triangular block. (a) t=0.5 s, and (b) t=1 s.
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Fig. 16 shows snapshots of water/air and slide/water interfaces
computed at four different time steps for the finest mesh, using the NS-
PLIC model. In the last image at t=3.5 s, the slide has stopped on the
horizontal bottom of the experimental flume, which is represented in
simulations but not visible in Fig. 16. In this snapshot sequence, we
observe the generation of a wave train, and its subsequent propagation
and reflection from the vertical sidewalls of the flume. Maximum run-
up, which occurs at the plan of symmetry on the flume axis, is seen to
also propagate towards and reflect of the sidewalls.

Fig. 17 shows the simulated slide center of mass motion as a
function of time compared to experimental data. The measured slide
motion is well reproduced in the finer mesh grid with RMS deviation
of 0.16 m. In the coarser grid, the slide is much slower than in
experiments (larger RMS deviation of 0.80 m). A computation
performed using an intermediate grid size (not presented here)
yields a slide motion curve in between the two presented curves,
indicating a consistent behavior of the model. Other computations for
different initial submergence values also matched experimental data
well, provided that a fine enough grid (i.e., with Δx/L∼1%) is used. A
closer inspection of our results indicates that, resolving the coupling
between slide motion and water flow in the numerical model is
achievable with good accuracy, but requires an overall grid about 20
times larger than when slide motion is a priori specified, as in Liu et al.
(2005).
Fig. 18 compares surface elevations simulated at wave gages 1 and
2, both in the generation area (see Fig. 15), to experimental data. At
gage 1, both the first elevation wave and through are well modeled in
the finer grid 2, whereas the second wave is much higher (162%) than
measured. This was also observed byWu (2004) for this gage location
and a slide initial submergence D=−0.05. Both waves phase and
hence celerity, however, are correctly predicted in the finer grid 2,
whereas the second wave is too slow in the coarser grid 1. Note that
wave heights are also under-predicted in the latter grid, which is
consistent with a slower slide (see Fig. 17). At gage 2, the lateral
spreading of the wave (run-up) is alsowell simulated using grid 2; the
simulated wave elevations are close to the experimental results, even
though waves seem to be a bit slower. In grid 1 again, the slower slide
generates both smaller and slower waves as compared to experi-
mental data.

Fig. 19, similarly, compares run-up simulated at run-up gages 2
and 3 (see Fig. 15) to experimental data. At gage 2, in the finer grid,
numerical results closely match experiments, except during the first
run-up phase where the model overestimates the recorded run-up
value and generates a quicker run-up motion. In the coarser grid, run-
down and run-up values are both overestimated. A similar behavior is
observed at gage 3. Wu (2004) also reported such discrepancies
between run-up data and numerical result with an initial submer-
gence Δ=−0.05.

4. Discussion and perspectives

The few experimental validation cases presented above demon-
strate our 3D-NS-VOF model's ability to accurately simulate the
coupling between rigid slidemotion and inducedwater flows and free
surface deformation. As pointed out before, rigid slide cases are the
most documented in the literature. Hence, a careful model validation
process should logically start with this class of problems.

Although rigid slides are idealized as compared to actual slides, at
this stage of validation, the numerical model can already provide
useful information of potential practical interest. Specifically, as a
validated numerical wave tank, our model can be used to replace or
complement physical experiments (for rigid slide cases). Further-
more, our ability to correctly simulate slide motion, rather than
specifying it in computations based on experimental measurements,
implies that no preliminary experimental study is necessary for
calculating slide motion. The accurate simulation of slide/water flow
coupling could also help better understanding the phenomenon of
landslide tsunami, through an analysis of energy and momentum
exchanges between slide and water. This aspect could be investigated
in detail in future numerical work, and energy exchange effects on
slide law of motion and free surface deformation could be elucidated.

To illustrate the model's potential for simulating more realistic
slides such as occurring in nature, in the following, we report on
preliminary simulations for: (i) retrogressive slope failure; (ii)
deformable slides; and (iii) rock slides akin to granular flows.

4.1. Retrogressive slope failure

Field work shows that, often, landslide tsunamis are created by
processes involving several slides, potentially interacting with each
other; this is referred to as retrogressive slope failure (e.g., Lovholt et
al., 2005). In such cases, the motion of an individual slide may be
strongly dependent upon the flow field generated by other preceding
slides; hence, slide law of motion should be computed in a fully
coupled way.

Preliminary simulations, similar to Heinrich's (1992) case (see
Section 3.3.1) were performed to illustrate the model's ability to
simulate multiple interacting slides. We considered the scenario of a
slide occurring in two stages, in which Heinrich's triangular sliding
block is broken up into two symmetrical rigid blocks initially



Fig. 16. Case of Fig. 15. Snapshots of slide/water and water/air interfaces at different times for grid 2 with 170×100×120 cells. Slide initial submergence is D=−0.1 m, slide density
is 2.14. (a) t=0.7 s, (b) t=1.4 s, (c) t=2.1 s, and (d) t=3.5 s.

Fig. 15. Sketch of Liu et al. (2005) experiments (from the 3rd international workshop on long wave run-up models (Catalina, June 2004)).
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Fig. 17. Case of Fig. 15. Time evolution of slide center of mass. Solid lines: numerical
results with (a) 62×76×24 cells and (b) 170×100×120 cells; (•): experimental data.
Initial slide submergence is Δ=−0.1 m, slide density is 2.14.

Fig. 18. Case of Fig. 15. Comparison between numerical results (solid lines) and
experimental data (•) for the time histories of free surface elevations at wave gage 1
(top figure) and wave gage 2 (bottom figure). Initial slide submergence is Δ=−0.1 m,
slide density is 2.14. (a) 62×76×24 cells, (b) 170×100×120 cells.

Fig. 19. Case of Fig. 15. Comparison between numerical results (solid lines) and
experimental data (•) for the time histories of run-up at gage 2 (top figure) and gage 3
(bottom figure). Initial submergence is Δ=−0.1 m, slide density is 2.14. (a) 62×76×24
cells, and (b) 170×100×120 cells.
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separated by 3.5 cm (Fig. 20). Both blocks have physical properties
identical to those of the Heinrich's case. In simulations, the bottom
block is first released at t=0, while the upper block is forced to stay at
rest by directly specifying zero fluid velocities within the discretized
matrix. At t=1 s, the upper block is released by relaxing the
constraint on fluid velocity.

Fig. 20 shows snapshots of fluid interfaces computed for this
scenario. At t=0.5 s, water has flown within the gap between the
blocks,which is openingup. The secondblock/slidemotion is initiatedat
t=1 s (as illustrated by streamlines shown on the second snapshot of
Fig. 20). At this time,weobserve analmostflat free surface at the scale of
thefigure, indicating that only a tinywave is generated by the first block
motion, due to its deep submergence and smaller volume as compared
to the single slide scenario (Fig. 12). Once the second shallower block/
slide motion is initiated, the free surface deformation becomes much
larger, with a time sequence similar to that of the single block case.

4.2. Deformable slides

Although this is outside the scope of this paper, to illustrate the
model's ability to simulate slide deformation during motion, and its
effect on wave generation, we performed preliminary simulations for
the case of a deformable slide, similar to that of Fig. 10. We used the
same density as in the rigid case, but a much lower viscosity of
102 Pa s. For this case, Fig. 21 shows that, as soon as the slide starts



Fig. 20. Two-rigid slides scenario (1 s delay). Snapshots of fluid interfaces and flow streamlines. Slide viscosity μ=1010 Pa s at t=(a) 0.5 s, (b) 1 s, (c) 1.5 s, and (d) 2 s.
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moving, it loses its initial shape and becomes thinner with a bulbous
front (t=0.5 s). At t=1 s, 1.5 s and 2 s, the slide moves over the
porous medium on the bottom, and progressively slows down due to
the zero velocity condition, which is implicitly imposed on the slide by
this medium.

The induced free surface elevation is qualitatively similar to that of
the rigid case, with the generation of two consecutive waves.
However, the second wave is less steep than for the rigid case, due
to the thinning of slide geometry, and hence does not immediately
break. This results in reduced dissipation and, consequently, at t=2 s
the wave seems higher than in the rigid case.
Fig. 21. Same as in Fig. 21 with a d
While, based on these results, the model is clearly able to simulate
deformable slides, the idealized simulations of Fig. 21 raise the
question of validation. First of all, real slides are complex phenomena
whose behavior depends on soil type as well as environmental and
geometrical parameters (Varnes, 1978). This complexity must be
taken into account in the model, in particular, by using a relevant
rheological law. So far, Newtonian and visco-plastic laws (i.e.
Herschel–Bulkley fluid) have been implemented and used in the
model. Such simple laws, however, may only be suited to represent a
small class of slides, which are nearly or fully saturated (Quecedo
et al., 2004).
eformable slide (μ=102 Pa s).



Fig. 22. Simulations of Fritz (2002) 2D granular slide experiments (top figures), as a Newtonian fluid (bottom figures), with water depth h=0.3 m, slide density is 2.64, slide volume
V=Vs/bh2=0.79 (with b channel width), slide thickness S=s/h=0.34, and impact Froude number F=2.8. Figures are given at time t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g = hð Þ

p
=: a) 0.72, and b) 1.48.
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4.3. Rock slides and granular flows

Rock slides may be represented as granular flows, for instance
using the macroscopic formulation given in Chen and Ling (1996). To
date, however, 3D simulations of tsunamis caused by rock slides have
only been performed using simpler rheological laws (e.g., a New-
tonian law as in Abadie et al., 2009, or a Bigham law as in Gisler et al.,
2006). The main difficulty for performing realistic simulations of
deformable slides of any type, is the paucity of detailed and relevant
experimental results that could be used for validation.

In this respect, Fritz (2002) and more recently Heller et al. (2008)
are among the very few studies to have reported comprehensive
experiments of waves generated by granular subaerial slides. In Fritz's
2D experiments, slide kinematics was obtained from laser measure-
ments and the flow kinematics was investigated in the generation
zone, using a Particle Image Velocimetry (PIV) method.

To assess the model's ability to simulate granular flows as
Newtonian slides, for high impact Froude numbers F (defined as
F = Vs =

ffiffiffiffiffiffiffiffiffi
ghð Þp

, where Vs is the slide impact velocity), we simulated a
few of the cases reported by Fritz (2002). One case is presented in
Fig. 22, with water depth h=0.3 m, slide density 2.64, slide volume
V=Vs/bh2=0.79 (with b channel width), slide thickness S=s/h=
0.34, and impact Froude number F=2.8. Fritz made laser measure-
ments of slide free surface at 0.07 m from the water line. We used
these measurements to specify the initial slide geometry in the
numerical model; doing so, the slide was initially located so that the
slide tip corresponds to the water line. Slide initial velocity was set to
4.80 m/s, in accordance with F=2.8. Like in Heinrich's case and for
the same reason, gravity was inclined at −45° and the x direction of
the computational domain corresponds to the slope. The computa-
tional grid consisted in irregular cells, with the finest mesh size being
Δx′/L=Δz′/L=1.8%.

The time step was automatically computed to achieve a mesh
Courant number less than 0.2, because slide motion is quite violent in
this case, leading to high rates of water/air interface deformation.
Several simulations were carried out, using different slide Reynolds
numbers Res (defined as ρ svss/μs). Slide viscosity was tuned so that
the first simulated wave fits experimental data at best, at the specified
time. The best results were obtained using Res=5.2 (i.e. μ=150 Pa s),
which are shown in Fig. 22 together with Fritz's experimental results,
for free surface deformations and water velocity values at two
different times during the generation process. The agreement is quite
good, even though some differences in slide and free surface geometry
can be observed. A large air volume is subsequently entrapped at the
back, during slide motion, stressing the importance of also modeling
air flow for such high impact Froude cases. [Note that the model
provides other important parameters (e.g., slide velocity and water
pressure), which were not measured in experiments, due to practical
difficulties.]
A closer inspection of numerical results indicates that, while the
first wave time evolution (not shownhere) is well simulated in Fig. 22,
the model does not reproduce trailing waves so well as compared to
experimental data. Moreover, both the initial and subsequent wave
generationprocesses are found to be very dependent on slide Reynolds
number (Morichon and Abadie, 2010). Finally, the optimal slide
Reynolds number found for this case does not seem to be universal and
may vary with the impact Froude number.

In closing, this preliminary investigation of more complex types of
slides indicates that, although progress has beenmade, this problem is
still far from being satisfactorily solved, which in particular stresses
the need for a careful and thorough model validation process.

5. Conclusions

A model solving Navier–Stokes equations for three fluids (water,
air and slide), with a Volume of Fluid (VOF) algorithms to track fluid
interfaces has been applied to the problem of waves generation by
landslides. Deformable slides are simulated as Newtonian (or non-
Newtonian) fluids. A penalty method is used to simulate rigid slides.
In this new formulation of the problem, we fully model the coupling
between slide and water during motion. To validate the model,
simulation results were compared to semi-empirical laws of motion
and experimental data. The following conclusions can be drawn:

• Direct numerical simulations of Navier–Stokes equations allow us to
accurately simulate impulse waves generated by subaerial or
submarine rigid slides, from generation to propagation stages.

• The penalty method used in the model efficiently simulates solid/
fluid interactions, and allows to accurately model rigid slide motion
as a fluid. With this method, it is now possible to directly calculate
slide motion (rather than specifying it as a boundary condition) and
generated waves, without requiring any further experimental
studies as in numerical work published earlier on this topic.

• The aerial phase of rigid slide motion is very accurately simulated in
the model. The submarine phase is more complex. Simulations
carried out considering semi-elliptical shapes show that the use of a
fine mesh and an accurate VOF method such as PLIC is required to
reproduce the correct slide law of motion underwater. Other
simulations considering wedges are less sensitive to mesh size or
the choice of VOF algorithm.

• The ability of the model to properly simulate the penetration of a
solid inwater was assessed by comparing numerical results with the
2D experiments (and SPH simulations) of Monaghan and Kos
(2000). The block kinematics was well reproduced and free surface
elevations matched experimental results reasonably well.

• The model was successfully applied to a 3D slide, by comparing to
experimental and other numerical results (Liu et al., 2005). In our
case, due to the full modeling of slide/water interactions, the
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numerical grid required to obtain good accuracy was 20 times that
used in Liu et al. (2005), based on a specified slide motion. Such
demanding computations required using a parallel version of the
model.

• Other preliminary simulations were run, that illustrated the model's
ability and potential for simulating more complex and realistic slide
cases such as: (i) retrogressive slope failure; (ii) deformable slides;
and (iii) rock/granular flows.

Based on the above 2D and 3D validation cases, we conclude that
the 3D-NS-VOF model can be used as a useful validated tool, for
performing both fundamental investigations (e.g., slide/water ener-
getic exchanges) and more practical simulations (e.g., retrogressive
rigid slides) of landslide wave generation. Regarding deformable
slides, because of the complexity and diversity of real slides, as well as
the lack of data available for comparison, the process of validation,
initiated here, should be pursued as a long-term goal, by simulating
experimental benchmark cases, as they become available.
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