Numerical modeing of diffusion-controlled phasetransformation using theDarken
method: application to the dissolution/precipitation processes in materials

S.Bordéré and S. Glocknér

8CNRS, University of Bordeaux, Arts Btétiersinstitute of Technology, Bordeaux INP, INRAE, 12M
Bordeaux, F33400 Talence, France

®Bordeaux INP, University of Bordeaux, CNRS, Artdvitiersinstitute of Technology, INRAE,
12M Bordeaux, F33400 Talence, France

* Corresponding author

Email addresssylvie.bordere@+bordeaux.fi(S. Bordere)

Abstract

Many material phasdransformations are controlledy bmass transport induced by
diffusion. To better understand such transformationsyerousnodelingstrategiest the scale
of the moving interfacesxist,with their strengths and weaknessBhase field approachase
basedn diffuse interfacethat donot requre any interface trackingsopposed to thodeased
on fixedgrid sharp interfacé&racking. In the case of binary twahase systesnin this paper
we addresthe key point of the mass balance equation at the interface invaleorgentration
jump, which determinethe interface moving velocitWe propose a unique diffusion equation
for both phases and their interface, based on the composbamicalpotentiat which are
continuous througbut the interfaceand asmoothvolumeof-fluid phase representatiomhis
modelis achieved in the framework of the Darken method, which involves intrinsic diffusion
of components and a drift velocity to which all compounds are subjected. This drift vedocity
shown to behatof the interfacelisplacement asell. Thismethodology iwverified for 1D and
3D dissolution/precipitation problemand hasa firstorder spatial convergenc&he 3D
simulations of precipitation and dissolution processes oémamplex microstructures clearly
show a bifurcation of the particle morphology from theitial spherical shape when the
diffusion edgeof each particle interawtith each otherAn extension of the diffusiopotential
to mechanical driving forces should make it possible to dealm&bthanechemicalcoupling

of mass transport.
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1.Introduction

The fundamental mechanism of diffusiaghat controk phase transformatisns
involved in a wide range of materials processe&mong others, we can mention the
solidification of pure liquid processes where energy diffusion is the main driving force, or
precipitation/dissolution processes in maibmponent systems involving a solid/liquid a
solid/solid interface where mass transport by diffusion has a large impact on microstructure
evolutiors. This is casan metallurgy during solid state annealing processd®re phase
transformationshave to becontrolled in order to obtain the volume fraction of phases
optimizing the mechanical propertigls2]; and also duringransient liquid phase phenomena
involving diffusioninduced solilification leading in some casesdetrimental pore formation
[3,4]. In this broadfield of diffusion processes involving complex coupling of driving forces,
we focusin this paperon theparticularcase 6 diffusion-controlled phase transformat®n
involving diffusion ofcomponentat constant temperature and pressure. In these conditions,
during the evolution of the system the local equilibrium at the interface between the two phases
is preserved yielding to a concentration jump at the interface in agreement with
thermodynamics. &sically, the underlying physics of such problems is the -tange
diffusion of components in each phase with the constraititeoharpnterface equilibrium.

The interface displacement is thus related to the conservation of the mass balance at the
interface. The approaches basedimKampmanrAWagner numerical model, which describes
nucledion, growth, and coarsening spherical precipitatesre of great interesh solving

such physical phenomena, since they give an insigtd microstructure evotion
characteristics such as the number of particles and their mean @6 jsnd for specific

times as regardghe particle density distribution functid®]. As a complement to these
approaches, for which particle morphology remsaspherical,there is a need to better
understangbarticle morphology changes during the processes. Several modeling approaches at

the interface scale have been developed to deal with this topic.



The firstondst he A phase fwidayldeleloped pnpnaterialcshiencq.
It is based on a diffuse phase functibat represents thepatial distribution of the different
phases, andnthe definition of a free energy functional depending on the phase fusttian
containsthe concentratiolependenparameterd8i 11]. The time evolution of the phase
functionwhich exhibits the microstructure evolution can thus be obtained from the derivative
of the continuous free energy functional with respect to the phase fuidiosgardste mass
transport equation, itan be btained from the derivative of the free energy functional with
respect tocomponentconcentrationsWhile the phase field formalisrbased on a diffuse
interface is not simplehis approach presents the advantage ofraokinga sharp interface

which brings its share of numerical difficulties.

Other approaches consist in solvimg types of mass conservation equations, one for
the bulk phases and the other for the interface, all equations being cdupgedain difficulty
is to model with accuracy thmass transfer and the displacement of the interface and to
conserve the total component concentrati®ome methodare basean a moving gricand
remeshing techgues tofollow the interfacan order to verify, during the whole simulation,
that a point oincides with the interface on which the jump condition is solved. The Landau
transformation is used to reach this goal, these methods being adapted to full explicit or implicit
approaches, constant to variable diffusion coefficigt614] and applied to binary alloys in
specfic planar, cylindri@al or sphericabeometriesRemeshing techques are also used to treat
arbitrary 3D mass transfer from sindlabble flows withan Arbitrary Lagrangian Eulerian
interface tracking algorithrfil5]. Converselymass transport equations can also be saived
fixed-grid spatial discretization armbupled withsharp interface trackingvhichis widely used
for computational fluid dynamic problemgany methodologies are used for the simulation of
these problems such as the framicking [16], levelset method17] and VolumeOf-Fluid

Piecewise Linear Interface Construction (\MBEIC) [18].

Furthermore, some authdravedeveloped specifimodelsbased on a single diffusion
equation to avoid the explicit treatment of the jump condiftwmmass transfer through fluid
deformable particle interface¥Ve canmention thework described in[19,20] where a
normalizedbr scalecdconcentratiornelps to remove the jump discontinuigydthe Continuous
Species Transfer (CST) modahsed on volumaveragingproposed if21i 23]. Based ora
method originally adapted to thermal seliguid phasechange problems, anique diffusion

model for the different phases and moving interfameslved in tansient liquidphaseéonding



is proposed if24], where a source term is used to take into account the jump iconalitthe

interface.

In this paper, walsoaim to develop a unigue diffusion model, based on the Darken
method[25] (readable if26]) commonly used in materials scienespecially toexplainthe
Kirkendall effect[27], i.e. the lattice shift in solidsf intrinsic diffusivities of atoms are very
different. This diffusion modehlso called the bvelocity methodwas found to be consistent
with the linear irreversible thermodynamics a monophasic systefi28]. It was shown to be
efficient for multicomponent systems where the intrinsic fluxes of each component are coupled
through the drift velocity6,29,30] This diffusion modelwritten throughthe derivative of
diffusion potentiglmay include different driving forces such as mechanical stress induced by
gravity [31] necessaryo model segregation in multicomponent mixtures under gr®ajy
Thisdriving force couplindprings a strong potentiality to tH2arkenbased methodologyhis
approachhasalso beenshown to be relevarib solvethe mass conservation equatianthe
interface when transfer through timgserface is involved33] for 1D multiphase problems with
moving interfaceWith aview to perforning direct simulations of component transfer at the
interface in this workwe proposéo extend thédarkenbasedmethodology to the twphase
binary system in the framework a@he smooth Volume-Of-Fluid (VOF)-basedinterface
advection methodn this way we aimto obtain a continuousingle potential fobulk mass
transporiand transfethrough a diffusenterface allowing usto deal wih diffusion-controlled
phase transformations involving concentration jsmhout havingo explicitly calculate the

mass conservation equation at the interface.

In the first section of the paper, we present the modeigthodology for each diffusion
componen{A, B), whichleads to a unique diffusion equation through the overalighase
systemcomposed of 2 bulk phases separated by a diffuse interface,régisravoiding the
specific equation of mass transfer at the interf&ext, the numerical discretization and
schenes of the equati@are presented ithe second section. The third section is devoted to
the verification of this methodologyith exact solutions forlD and 3D dissolution and
precipitation processes. In the lastection we presentthe 3D simulations of

dissolution/precipitation processes of more complex systems involving several particles.



2. Modeling

The mass transport molileg concerns a binary 8 two-phase syster{Fig. 1-a). The
surface S represents the interface between th@hase( W -domain) and the b-phase(

W’ -domain) The a-phase is a solution constituted A and Bcomponentsnd theb-phase is

a pure phase only constituteg B-componen{Fig. 1b).

. } Fphase a-phase

c5
M
Q)

o

e | ﬁ

N M
(@) (b)

Fig. 1 : (a) definition of the AB binary twephase gstenm showing along the NMine: (b) the
b-phase jomogenous an example of theoncentratioriield in the a-phasgA-B solution),and the
conentration jump at the interfadeetween the two equilibrium concentratiog® and c”” with

k=A,B; ¢ is the initial boundargoncentrationNotethat the AB solution is ovessaturated in
the B-componentcorresponding to &phase growth scenario.

The conservation of chemicadmponent& (k= A, B) specific to the bulk plse domainV\ S

is defined by the equation:

%:- B3, in W\'S, (1)

where J, is the total flux of th&k-component in the volumftixed frame of reference.
If a sharp interfacenodelling approachs usedthe J, -fluxes in each phasare solved

separately using the inteliffusion coefficientsD? and D? corresponding to the-phase and



b-phases, respectively, as showikig. 2a. Usingthevalue ofthe B.component fluxes on both

sides of the interface]2’® and J5'®, the velocity of the interfac®/ is determined ttough

the mass balance equati@4,13,18,33]

. Ja/Sm _Jb/Sm .
V=V g =—2 *2 *3; Sy, (2)

Cg - Cg

wherengis the normalectorto the interfacgFig. 2a) and c2”, ¢2 the two equilibrium

concentrations
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Fig. 2: Comparisorbetween : a) a sharp interface modelling approach involving the total flyxe

and the mass balance equation at the interfaceterminethe interface velocityVs; and b) the

proposed methodology based on a unique equation that describes the intrinsi¢fluxése two

phases and the diffused interface, and on the Darken velocity that drives ey imberface
kinetics.

The aim of the proposed modeling methodology is to overcome the numerical difficulties
relatedto the resolution of the mass balance equation at the sharp interfaoadiyering a
diffuse interface approach and @gfining a unique transport equation valid in the bulk phases

as in a diffuse interface region. Thisifying equation results from different modeling steps

which are described in the following. In section 2.1, the total fldxesn W\ S are determined

thanks to the Darken velocity and an extended chemical potential. In section 2.2 we show that
althoughthe chemical potentigs continuous at the interface itnsta differentiable function.



In section 2.3 a smooth abe function is introduced to allow the derivation of the potential and

a uniquetransport equation for the bulk atiteinterface regiongs proposed

2.1 Mass transport equation using Darken method

Theproposed approadh based on the theory of muttbmponent diffusion for simple phases

[281 30], which differs from the previous one in that the total flpis decomposed int) the
intrinsic flux of thek-componentg, relative to the latticdixed frame of reference anahich
differ in most casefom one component to another, andhe drift flux based on the vadity
VP of the lattice frame relative to the volurframeto which all components are subjected to.

For the binary systerthis theory corresponds to the Darken §2&26,34] with VP being
the Darken velocity. The total flux writes:

J. =j +c VP in W\S. (3)

This modelingmethodologyis thermodynamically consistef28i 30] when combined with
volume transpor{35] for energy coservation, or when the partial volumper mole of

components are different.

In the following the defined equationswill be restricted tothe conditions of constant

temperaturend pressurand with asamepartial volumeper molefor the twocomponentsn

both phase: V7 =V¢ =V,2 =V.," =V_.
In these conditionghetotal componentonservation imp¢sthat:
J,+J;=0in W\S. 4)
TheDarken velocity cathus be deduced from Egs. (3) anyl [dading totherelation:
VP =-V (j,+]jg) in W\S. (5)
The intrinsic fluxes are definaging theextendedthemicalpotential /7] [28,30,33,36}
jr =-M.cBmin W\S, (6)
whereMkis themobility of thek-component

Remark. The extendecchemicalpotentialof thek-components defined[28] as:



m=m'+n+ny, (7)
where n§" is the pure chemical contribution related to the component concentrations,

nf' is themechanicatontributiondueto pressureand 77§ the electrical contributioresulting
from whenthe charged components are subjectedrelectric field.
Through thisextended chemicgdotential,it is possible to couplseveral driving forcesf

componentdiffusion. For instance,n the case wheraonnegligible surface tensiaare

involved, the pressure inducky surface tensi@yiving rise to a pressure jump at the interface
can be takemto accounthrough the termvf =V_p, wherep is the local pressuf@8]. This

pressure jump betweehe solution and precipitate may lead non-negligible shifts in the
compositionsof the individual phase86]. In our future modeling strategythe pressure field
induced by the surface tensionwill be determind from the resolution of momentum

conservation equatidi37,38].

2.2 Continuous chemical potential for bulk phasesiatetface

In the present work, fothe A-B binary two-phase system, at constant temperafund

pressurep and in the absence of any other constraiethave 7' =0 and 7§ =0. The
chemical potential relative to tlephase can be definedaiinction of activity coefficient of

the kcomponenta; [1,36] by:

nf () = n§* +RTh(ad (cf)) in W (8)
Moreover,at systemequilibrium, theconcentrations of botbomponentarefixed in the two
phases. They argenoted ¢ for the a-phaseand ¢ for the b-phase, respectivelyrhe

interface is thus characterized by concentration discontinwhereasthe equilibrium

chemical potential 77§” and n{" of the k-componentareidenticalwithin the two phasest

the twophase equilibriumve canwrite in the case of stoichiometrizphase

m=nf(c)=ni(c)=nF +RTh(a(c’)) in W'. )

In the case ofa diffusion-controled moving interfaceprocess the interface emainsat

equilibrium during its evolution,which impliesthat ¢ (x) =¢ and ¢’ (xs) =¢. at every



point Xg located on the interfadd-igs. 1b and 23 Thus considering Eq. (9 a continuous

chemicalpotential can be definedt any positiorx of the system

nf'? (x)= m +RTIn (a2’ (¢ (x))/a’* (c2’* () in W 8 W8S, (10)

verifying that a7 (c?(x))/a¢ (¢ (%)) =a?(c? (%))/a’(c” (x))=1 forxi S when the
interface is in quasequilibrium. This potential is continuo@srosshe interface buis nota
differentiable function

2.3 Uniquetransport equation for diffuseterface and ideal solution assumption

In the context of a smooth VOF method used to modehtegace advectiof22], we consider
the phase functiofi thatallows the differentiation dhe two phases with= 0 for thea-phase
andf =1 for theb-phase (Fig2b). The part of the domain defined Oy f <1 corresponds to
iff

the diffuse interface volume denoted W™ andc an be rel ated to an

characterized by a continuous evolution of the saturation concentcat{ig. 2b) fromc?”

to ¢/ andis defined as follows using the phase function:

¢ =fc +(1- f)c. (11)

The local equilibrium of the interface implies thaty(c,(x))=m for xI W', As a
conseqguence, the potential equation (Eqg. (10)) can be defined on the whole systetimeusing
phase function. #suming that thez-phase and the diffuse interface verify the condition of

ideal solutionak(ck (x)):\7mck (xX) the chemical potential follows

m(x)= g +RTIn(c,(0/c, (F(x)). (12)

With a phase function sufficiently smooth to express tl¢iaglerivatives at each poiof the
diffused interface volum&\*" | the intrinsic flux equations relative to the two phases in the
sharp interface modelling (Eq. (63Je reducedwhencombined with Eq(12), to a unique
equation defined in the overglFdomain. This point is illustrated in Fig. 2. As a consequence,
the mass conservation equatiomeative to the two phases (Eq. (1)) can also be reducad to
unique equation in the overal-domain. The transpb equation system of component

concentrationghus gives risewith the proposed diffused interface methodoldgy
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wherethe mobility of thek-component is defined through thbase functiorandthe

valuesof thek-componenmobility correspondingo the a-phase and-phase,M? and M/

, respectivelyas:

M, =M/ +@- F)M?. (14

2.3 Advection of the phase function and computation of mobibines the equilibrium

concentrations

As a final stepafter the resolution of Eq. (1L3he phase function is advected using the Darken

velocity V P using the equation :

“?’tr:vf’af. (15)

Thevalues of theecomponentnobilitiesand equilibrium concentratior@sethenupdatedwith

the new phase functiohusing Eqg. (11) and Eq. (L4

3. Numerical resolution

The proposed model is discretized and solved on a fixed Cartesian staggered grid thanks to the

parallel framework ofhe Notus CFD codgg8]. In this context, the scalar variablés ¢, , and
m , as well as the problem constaniéf) and M, (7) are defined and computed at the center

of the mesh cells, whereas the components of the vector varjablgs, andV® are computed

at the center of the cell faces (Fig. 3c). Moreover, the interface does not match the g8ia)(Fig.
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and isdiffused overa few cells by the high gradient of the phase funcfig¢fig. 3). The
interface is usually plotted thanks to the arbitrary isovdld0.5 (Figs. 3a and 1.

The equation system E(L3-1) is solved as followedt is split into its diffusion parEq. (19
and norconservative form of the advectipartEq. (17, and discretizeth time thanks to a

first-order forward Euler scheme:

TeCL' G —_ )"
T Dt k
1 .
Tjp =- Mo
Png=m+RTh(c/cy)
AA~M |
Te—ck[;tck+c'kE)C§/D“:0
)
A N+l m
'\:\Ck -Ck +VDnDCkm:0
i Dt (17)
I'with
! 2
| n— \7 n
AVD__VmaJk
f et
@
1> >
ey

e

@7 & M
» j.-x J,.x V2.x
<oy Joy VO
Aj.z J -z VP.z

(a) (b) (c)

Fig. 3: (a)Visualizationof the phase functioh described on a uniform grid. This functimable to
differentiatethe solutionf = 0 from the particle’ = 1; (b) Thelocation of the interface is arbitral
visualized by the isovalué= 0.5; (c) Salar and vector variable locations on a staggered grid.
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A secondorder centered scheme is used for the diffusion part with a linear interpolation of the

M,c, coefficient to have it orthe center of the face celld Lax-Wendroffscheme with a

Superbee flustimiter [39] is used to solvtheadvection partEq. (172)),as well as the volume
fraction phase advection@E(15). Finally, mobility coefficientand equilibrium concenttian

are updatedespectively thanks to equations (14) and)(11

Remarks. Insteadof the LaxWendroff TVD schemether approaches could also be used such
as the advection of a levsét function associated with a regularitéehvisidefunction, or a
piecewise lineainterface construction method associated aosmoothing function of the
reconstructed interfacés it is shown insection4 the proposed approachascurateenough

and yield resultswith a very small errarcompared taheir exact solutions. Moreover, it
allows us teefficiently run 3D simulations of several spheres with interface deformations and
recannectionsRegarding thénitial conditions of the phase function, a subsampling method is
used on each ceihtersectedby the sphere interface. Subsampliras been shown be vyield

accuratevalues of the phase function between 0 and 1 on these cells.

4. Results

4.1 Verificationof the modeling methodology

For verification purposg the proposed methodology is compamdh the exact
solutionof thefirst equation osystem(20) applied tothe particle radius growtin developed
by Zener{40] for planar { = 1), cylindrical { = 2) and spherical/(= 3) geometriegsand the

following assumptions:

i) homogeneous-phasecy =c2 (i.e. no concentration gradiert for instance
a purephase
i) Fickbs first | a wdiffuian B-comporentih the aaphasef | u x

J; =DDBcg, which states thaluxesare proportional to the concentration gradiamtd that
every total flux of BcomponentJg, correspondsto the exact total reverse flux of

A componentd , =-J, satisfyingEq. (3). The interdiffusion coefficientD is thus written
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using the intrinsic diffusion coefficient®, and D, correspondingo the component#\ and

B, respectively[25,26,34]as
D =V, (C,Ds +CsD, ). (18)

For the ideal solution, the intrinsic diffusion coefficient can be defitgdthe component
mobility through equatiorD, = RTM, [25,26,30] allowing us to rewrite the interdiffusion

coefficientD as:

D =RV, (c,Ms+c;M,). (19
iii) constantinter-diffusion coefficient D,
iv) semiinfinite systeminsuring zereflux boundary conditionc? (x == ,t) =c2°.

Following these assumptions, the kinetics of the particle radius gras/ttefined by:

ér(t) = k-/ADt

| . , ,
7 Wherek is solution of theequation

1261, (k) exp(k?) = 2.~ S8
| B " CB (20)
with

=R Vet y)dy

e e e )

Note that his solutiononly depends on the system geometry through tbeefficient andhe
coefficient of saturation degre®; defined withthe concentrationsc?”, ¢2 and ¢2° shown in

Fig. 1b. Theimplicit equationfor the k-coefficientdefined inthe second equation of system
(20) has been determined numerically without asgumptioa on the concentration profile.
The kinetics as well as the concentration profit# the Bcomponent irthe solution domain
W arethus exacfor all saturation degreecurrentlyconsideredThe concentration profilis
definedthrough thex-positionby the relatio{13,40}.

a*

ch - C5° ax- s(t)@

(k) ¢ 4Dt o (21

ca(xt)=cg’+
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where S(t) is the position of théwo-phase interfacat timet, the radius being defined
by r(t) =s(t)- s(t,). Note thatfor / = 1, I,(X) is reduced tcerfc(x). Fora 3D geometrythe

partial integration ofl ,(x) (Eg. (203)) leads to

159 =%XX) Jp erfe(x) (22)

giving rise when introduced in Eqg. 2B with / =3, to anotherimplicit relationship

[ 3 4 foBtlee]determination of the kinetics constamtefined as follows:
2k?(1- ok explk?)eric(k))= w. 23)
Equation system20) and Eq.(21) are also valid fothe case othe dissolution process, but

only for the planar geometryor 3D dissolutionthe timedependence of the radius of the

precipitatedoes not verifyr (t) - r, =- K+/Dt [41,42] It should be notethatthe exact explicit

kinetics does naturrentlyexist The bestpproximationis obtainedfor a stationary interface
and an infinite mediumassumption$42], giving rise in the casef small dissolution time
[41,43]to:

wbt 2w
ri) =r, + + Dt , 24
O=r+ ==+ (24)
or in the case of atlissolutiontimes [43] to:
rt) = \/r2+2th;%+ 2, 8 (25)
° C VDt =+

The chosenconditions for simulation areongruent wth that ofthe exact solution of Zener

since:
) the b-phasas a pure phseconstituted b)B-componeanCé’ =1lin W.

i) the intrinsic diffuson of B-componentj ; (Eg.(13)), assuming that tha-phase

is ideal leadsto j, =- M, cBm =- M, RTbc, showingthat fluxes are proportioral to the
concentration gradig, thereby consistenti t h F i. Th&diffgsion od the Acomponent

is currently notconsideregi.e. M, =0.
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iii) For a twecomponent systengondition ii) gives riseto the interdiffusion
coefficient Eq. (18): D=RTV_c,M,. To be congruent witithe constant intediffusion

coefficient D for the a-phasefor a modelindgtheory comparisanthe mobility of the

B-components consideredo beconcentratiordependenthrough the relation:

a 1 0

Mg(c,) =M m (26)
C\Vm®-a :

whereM is amobility constant andeis a low value(<0.01) neededo calculate the

mobility whenc, - 0. The simulation kinetices compared to theoryntil the concentration

at thesystemboundaryc, (x = L,t) remains equal ta2°.

4.1.11D dissolution/precipitatiorprocesss

The simulation of the dissolution process tbe planar surfacg1D problem)is
performedstarting from the configuratiohewn in Kg. 2aTo. Thethermodynamic and kinetic

constants and initiadonditions are presented irable 1

The Neumann conditiois considered fothe four boundariegnsuringzero flux at boundaries
and thus mass conservatidrhe simulations of the dissolution process pegormed with a

mesh size o600x4 for times up téd@/L*=0.01, and amesh size ofi00x4mesh forthe

long time dissolution process. The time incremsri =1x10" s,

Vel Ve Ve by ow k
1D dissolution 1.0 0.75 0.5 1.0 -1.0 -0.3578345
1D precipitation 1.0 0.5 0.75 1.0 0.5 0.4327516
3D dissolution 1.0 0.5 0.49 1.0 -0.02 -
3D precipitation 1.0 0.5 0.51 1.0 0.02 0.1099555

Table 1: Thermodynamic and dynamic constants used for t@d BDsimulation of the dissolutiol
and precipitationprocessesV,cs” and V,c3" are the equilibrium molar fractions; initial mol;

fractions areV, c." for the b-phase and/ c3° for the a-phase;w s the coefficient of saturatio
degree and the kinetic coefficient verifyindeq. (202) or Eq. ().
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Fig. 4 presentsdifferent characteristic time of the dissolutionand precipitation
proceses showing thedisplacemenbf the interfaceand the correspondinB-component
concentration in the-phase At time td/L* =0.01, we notethat thediffusion edgeis far

from theright boundaryfor both processes i@s. 4a-T1 and BT>), thus verifyingconditioniv)

of the Zeneexact solutionc] (x/ L =1,t) =c3°.

A comparisorof the concentration profilesith the exact solutios defined using Eq. (21s
shownin Fig. 5for threeevolution times up ta @/ L* = 0.01. Notethat thecomputedorofiles
match the exact onder both dissolution and precipitation processesth a high degree of
accuracywith respect to the concentration jump at the interfacd the concentration gradient
in the a-phase This result shows that the mass transfer dynamic thouighe interface is
high enough to obtain local equilibriymhich is driven irough the chemical potential defined
in Eqg. (12). As a consequengcenass transport in the solution is the limited process which

imposes the interface kinetics in agreement with the theory framework.
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Fig. 4: 1D simulation of(a) the dissolutiorand (b) the precipitation processof a pure solid (in
orange) showing the molar fraction field of tBecomponenin the a-phase at differergvolution
times:To, t.D/L?=0; Ty, t.D/L?=0.01; T, t.D/ L*=0.06.
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Fig. 5: Profile evolutions duringa) the dissolutiorand(b) the precipitatioprocesesuntil the final
stable state. The simulation profiles are compared thighexact Zener profiles ¢£(21)) for the
three dimensionless timasD / L? up to 0.01 and foihefinal stable state.
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Thekineticsof the interface displacement quantifiedthg distances(t) - s(t,) =r(t) is shown

up to the final stable staite Fig. 6for the disslution processand in Fig.7 for the precipitation
process First, we note that for early tinse when the diffusion edge is féwom the right
boundary, thecomputedkinetics is obtained with a high accuraeg canbe sea with the
magnification of thisearly time domain (i§s. 6b and7b). To verify the spatial order
convergence of the proposed method, the error on the position of the intetface 4= 0.01

is plotted asa function of the mesh size Fig. 8 A first-order spatial convergence, in

accordance with the scheme used, is exhibited for both processes.

When the diffusion edges have reached the boundary, which is the casetabfinfe= 0.08

for the dissolution processi(fF 5a), and timet.D/ L* = 0.066 for the precipitation process
(Fig. 5b), the theoreticaturve established with? (x/ L =1,t) =¢2° is nolongervalid and thus

no comparisonvith theexact solutions possible. As expected, the end state is obtained when
the concentration of BEomponentis constant througiut the a-phase and equab \7mcg*,

respectively0.75and 0.5 forthe dissoluton and precipitation processeégote that the exact

values of the interfageositionat equilibriums(t,,,)/ L =0.2 (s(t,)/ L =0.6) for the dissolution

processand s(t,,,)/ L =0.55 (s(t,)/ L =0.1) for the precipitation procesare obtainedrom the

equations(t)/L = (CtEft - )/(Cé’* - CS) with an accuracy b&r than 0.1% for anesh size of

400x4(CtBOt being the total concentration of&@mponent into the systgmMoreover, the

concentration conservation of thecBmponent in the systeduring the overall process is
around 2x10d %.
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Fig. 6: Kinetic of interfacedisplacement duringhe 1D dissolutionprocessfor: (a) the overall
evolutionup tothefinal stable statgb) for early timemagnificationshowing a good match betwe:

simulationand exact kinetic$Eq. 20.1)).

0.1 , . T . T
— Early time exact solution = Early time exact solution
I~ |e—& Simulation — 0.08 o Simulation —
— |
2 = 006 B
- e
R4 =
\ '
— —
~ ~
o 05 = = 0.04 1
0.02-f .
0 - L L . 0 L : ! ‘ l
0.5 1 1.5 0.0025 0.005 0.0075 0.01
2 2
t- D/ tDi L
() (b)

Fig. 7: Kinetic of interfacedisplacement during the 1precipitationprocessfor: (a) the overall

evolution up tothe equilibrium configuration; (b) for early time showing a good match bet\
simulation and exact kineti¢gq. (2.1)).
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Fig. 8 Relative error(l’ - rth)/ I, of the interface displacemeattimetd/L? = 0.01 as a function
of thenumber ofcellsin the mesh N foboththe 1D dissolutionand 1Dprecipitation processes.

To better understand the mass trant#fesugh the interfacdriven ty the gradientof

the chemicalpotential definedn Eq.(12), the scalar variable€; and /7, as well as the
intensity of the vector variablek, J,, and VP, are plottedin Fig. 9a. First, we note that
except for the chemical potentidl, all the variables exhibit a jump in the vicinity of the

interface As shown in Fig. 2lthe Darken velocit}'lntensityVD andthe intrinsic fluxintensity

Jx of the B.componentn Fig. 9arenearly constantirough the interface.



22

sAldf - diff
s T MMM N NN NN
1.0 \;‘x\x\ 1.0 “1
x ,‘\“
wx / =
/
0.5 X " X
.5] % 5 = - 1
2] \w ;’
E H-‘\‘*\ \5\ ,; bbbk ¢
= -, ¥ /
A

2 0.0F%xxxxxxxx k\“‘\o.",,_ EVESEVESES ,,,-LL/ 0.5
=
.2
&
2
& -0.5] 0.5 0
A

-1.0] 1.0]

(a) (b)
0.2 4 0.6 0.8 0.395 oﬁfo 0.405
x/L
—=— phase function ¢ ~ —4— 41,-5/RT  —e—V ¢,

—— j,-V,L/D ——Jy"'.V,L/D

*1rD
X JB—CBI/

—V2.I/D

Fig. 9 Characteristicef the scalar variableg; and /7, and intensities of the vector variablhs,

Jk , and V® for the dissolution time.D/ L2 = 0.08: (a)for the entiresystem; (b) in the vicinity o
the interfacadentified by thevariation ofthe phase indicator functioh.

Moreover, the intensity J,- cV° is constantthrough the interface. This result for

1D simulation show that the mass balancéhrough the diffused interface ismplicitly

consideredn this modeling methodologythereby avoiding the need to solve an additional

equation(Eq. (2)) Moreover, thanovingvelocity of the interfacés verifiedto bethe Darken

velocity V° .

4.1.23D precipitationprocess

The exact solution®r the spherical particle growth kinetics (systequation (2pwith

/ = 3) is defined withaninitial particle radiusr, =0. Since the simulations have to start from

a nonzero particle radius, there are two waysampare theoretical and numerical simulation

results



23

The first one is toconsideredthe concentration fielgpredictedby Eqg. (21), with

ax- s(t) § : _— , :
| ,ee—=—=="0 calculated from Eq. (22)at the elapse timefor the initial zereparticle radius to

Q ‘\/4Dt -

reach the radius, considering Eq.20.1). The simulation of the spherical particle grovigh

shown in Fig. 10aand is performed startingrom the predicted concentration field at

r,/ L =0.025 using thek-coefficient defined fromw= 0.02 (see Tablg) and calculated using

Eq. (202) or Eq.(23). Duringthe evolution, theliffusion edgewithin the a-phasds far from

the boundariesgiving rise to sphericalso-values of the of B-componentconcentration
centered on the particlerhich arethenecessary calition for a comparison with theoryhis

comparison shows a relative errord? % and iscomparable with the one obtained fbet
1D procesqFig. 8.

The second way to compattee simulation and theoretical resultsto considerthe

kinetic equation of the radius squared growft) =r7 +44°Dt starting froma constant
B-componenfractionV, c2° for the a-phasg36]. In thiscase, ie simulation iperformedwith
aninitial particle radiusr,/L =0.05 anda B-component concentratioy c2° =0.51, andthe

k-coefficientis the sames that previously defined for= 002 (see Table 1)n this second
case, hesimulatedkinetics of the particlgrow until astable statasshown in kg. 10b. At the
beginning of the process the curve exhilatstraight line allowing us to determine the

simulatedk-coefficient. The obtained valuk,,, =0.1154 corresponds to a relative error of

4% comparedto the theoretical an(see Tabld) and isin agreement with the spatial

convergence study of the JiocesgFig. 8).

We notethat once the diffusion edge reaches the boundaries, thelises of the BEomponent
concentration are nongerspherical, leading to a nasotropic particle growtliconcentration
map 3 and 30mage 4in Fig. 100. The interface displacement is reduced when the distance
between the particle and the boundary is short.
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Fig. 10: Time evolution of thepherical particleluring the precipitation process using the satura
degreew= 0.02 (see Table Bndthe characteristic BEomponent concentration field&)the early

radiusevolution r(t)/ L, starting froman initial particle radiusr,/L =0.025 and its associate

concentration fieldis compared with the theoretical curve plotted usingctbeefficient definedy
wand/ = 3 (see equations (20.@ith / = 3 or (23); a meshsize of 20¢ andatime increment

Dt=10"s are used(b) evolution of the particle radius squared'(t)/ L up to the stable statt
starting from an initial particle radiusr(t,)/L=0.05and a B-component concentratio

V. c2° =0.51; amesh of sizd0C and time incremenbt =10°s are used
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To showthatthe final shape of the particle is not an artifact of the Cartesian discretjdatton
the result of interactions of the concentration field with boundanieshave simulated the
phaseparticle growth within a spherical cavitycatedinside a second domain bfphase. The
cavityis full of a-phasewnhich is oversaturated in-BomponentFig. 11a). In these conditions,
the two a-phaseb-phaseinterfacesare expected tmovein opposite directions whilbeing
subtracted from theubic system geometrylhis is preciselywhat we observe as regards the
systemat equilibriumshown inFigs. 11b-c, where the twoa-phaseb-phaseinterfaces are
spherical. It thusighlights that the transformation from sphersiahpeo smoothcubic shape
(Fig. 119 is induced by the interaction of the congtation field with thecubic system
boundaries

(b)

() (d)

Fig. 11: Comparison of thé-phaseparticle growth within a spherical cavitycatedinside a seconc
domain of b-phaseand that of theb-phasegrowth within the cubic systenThe cavity is fullof
a-phasenitially oversaturated in Bomponen¥, _c2° =0.7. (a) initial configuration; (b)and (¢ two

views of the final stable state;)(final stable state of the single particle within the cubic system



