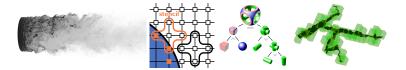




# Notus CFD code presentation

### S. Glockner, A. Lemoine, M. Coquerelle, J. Picot, A. Jost, F. Henri, F. Desmons, F. Salmon, ...

Institut de Mécanique et d'Ingénierie de Bordeaux Université de Bordeaux, Bordeaux-INP, CNRS UMR 52 95


https://notus-cfd.org

Journées Calcul & Simulation - Dec. 2021



S. Glockner & al. (I2M / TREFLE)

- The main features of Notus
- Short focus of some proposed numerical methods
- GENCI HPC challenge 2020 at TGCC



### Open-source project started from scratch in 2015 (CeCILL Licence)

- Modeling and simulation of incompressible fluid flows, multiphysics
- 2D/3D Finite Volume/Difference methods on staggered grids, massively parallel
- Still under development (version 0.5.0)
- From 0.5.0 to 1.0.0, make all things work together!

### Intended users

- Mechanical community: easy to use and adapt, proven state-of-the-art numerical methods, towards numerical experiments
- Mathematical community: develop new numerical schemes, fast and efficient framework for comparative and qualitative tests, benchmark methods on identified physical test cases, numerical toolbox
- Take advantage of synergies between Research / Teaching / Industry / HPC

### What is not Notus

A concurrent of, a commercial tool, a click button code

### Supercomputers

- GENCI/PRACE: Joliot Curie at TGCC, Occigen at CINES, Jean-Zay at IDRIS
- Curta at mesocentre MCIA... also on Linux laptop!

### Modern development framework

- Fortran 2008
- MPI parallel coding library
- OpenMP share memory parallel coding library
- Mask parallelism complexities for easy programming
- Git distributed version control system
- CMake cross-platform build system → easy installation
- Doxygen documentation generator from source code
- Linux only!
- Build scripts, Notus and third party libraries
- A thoroughly validated and documented code, non-regression approach
- Web sites: general, doc, git https://notus-cfd.org, https://doc.notus-cfd.org, https://git.notus-cfd.org

### Portability

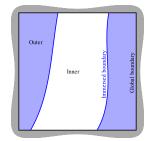
- GNU + OpenMPI; Intel + IntelMPI
- Sequential and Parallel versions
- $\rightarrow$  "Same" results between 10<sup>-8</sup> and 10<sup>-15</sup>)

# Features - Modeling

### Domain

2D/3D Cartesian, immersed sub-domains

### Incompressible Navier-Stokes equations


- Buoyancy force (Boussinesq approximation)
- Surface tension force (CSF model)
- Large Eddy Simulation (mixed scale model, WALE)
- RANS k-ω SST

### Multiphase immiscible flows

- One-fluid model
- Volume-of-Fluid, Moment-of-Fluid, Level-Set interface representations

### Energy equation, Species transport equations

- Free, mixed or forced convection, phase change liquid/solid
- Passive scalar, thermosolutal flows



# Features - Numerical methods

### Discretization

- 2D/3D Cartesian on staggered grids, automatic partitioning
- Implicit schemes: up to O(2) implicit schemes (advection and diffusion)
- Explicit schemes: O(2) TVD LV Superbee, O(3) & O(5) WENO, HOUC (advection); O(2) & O(4) centered (diffusion)
- Complex geometry: Immersed Boundary Method (1<sup>st</sup> & 2<sup>nd</sup> order)

### Navier-Stokes

- Non conservative or momentum preserving approaches
- Velocity/pressure coupling: time splitting methods (Goda, Timmermans)
- Surface tension: Height Function or Closest-Point methods to compute curvature

### Fluid / fluid interface representation and transport

- Volume-of-Fluid method 2D-3D / PLIC (directional splitting)
- Moment-of-Fluid method 2D-3D / backward RK2 advection
- Level-set / WENO

# HYPRE library (LLNL)

- BiCGStab, GMRES iterative solvers
- Preconditioners: geometric & algebraic multigrid

### MUMPS direct solver

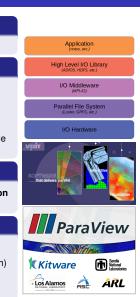
- Mainly for 2D linear systems
- PORD, Metis graph partitioners

# I/O - Visualisation: ADIOS & Notus

### Domain is partitioned, data are distributed

 $\rightarrow$  How to write and plot data efficiently on thousands of processors?

### Use of ADIOS library (Oak Ridge National Laboratory)


- Open-source
- Simple and flexible way to describe the data
- Masks IO parallelism, different methods: POSIX, MPI-IO, aggregation
- From 1 to 100 000 processors, around 50 GBs<sup>-1</sup> on Joliot Curie Lustre file system

## Visualisation of the results $\rightarrow$ VisIt (LLNL), Paraview

With ADIOS file format, Visit is limited to 2 billion cells, sequential version only!

### Pixie

- Based on HDF5 library (.h5 files)
- Compatible with parallel Vislt (automatic parallel domain decomposition)
- Non-uniform rectilinear grids
- Notus Pixie output less efficient then ADIOS, around 8GBs<sup>-1</sup> on Joliot Curie Lustre file system



S. Glockner & al. (I2M / TREFLE)

# Verification and Validation V&V

### Notus V&V python script

#### Non-regression

- Iist of V&V test cases files
- quick or full validation (up to 1600 MPI jobs), database of reference values for each case
- validation runs on supercomputers thanks to slurm (2 pass script: submit jobs, collect and post-process)
- results in txt file: OK, NO, FAIL, difference to expected values. Summary.

#### Grid convergence: run the same case varying mesh or time step

- run (interactivly or submission) the test case with different meshes
- collect the results of the chosen quantities, compute convergence order and eventually extrapolated values
- included into the non-regression process

### Performance python script

- Verify weak and strong scalability
- Identify and measure relevant parts of the code
- Verify I/O performance
- On several supercomputers (from local to GENCI/PRACE)
- Determine optimal use of supercomputers (number of cells per core)
- Compare measured scalability to the expected one
- Ensure non regression of these performances

# User Interface: .nts file

### Concept

- Text .nts files (unicode)
- Self-explanatory keywords, precise grammar
- Efficient parser that supports:
  - variable declaration
  - formula
  - 'include'
  - logical tests, loops
- Associated documentation → test\_cases/doc directory

### .nts file structure

- Physical fluid properties data base: std/physical\_properties.nts file
- One .nts file per test case, block structure:
  - include and variable declarations
  - system{}
  - domain{}
  - mesh{}
  - o modeling{}
  - numerical\_methods{}
  - opst\_processing{}

```
include std "physical properties.nts";
system { measure cpu time; }
domain {
  corner 2 coordinates (1.0, 2.0);
arid {
  grid_type regular;
  number of cells (32, 32);
modeling {
        left dirichlet 0.0;
        right dirichlet 1.0;
        bottom neumann 0.0:
numerical parameters {
  time iterations 1;
  energy {
    solver mumps metis;
```

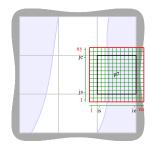
S. Glockner & al. (I2M / TREFLE)

# Some development keys - Masking parallelism

# Numerical domain and MPI process ghost cells

- The global domain is partitioned into subdomains
- Addition of a few layers of cells surrounding the local domain:  $nx \times ny \times nz$  cells

### MPI generic routines to exchange data


- 2D/3D, whatever overlapping zone size
- Integer, double
- Cell array, or vector defined on staggered grid

```
call mpi_exchange(pressure)
```

- call mpi\_exchange(velocity)
- Mandatory after any spatial derivative computations
- MPI Exchange + Fill boundary ghost nodes call fill-ghost\_nodes(scalar, boundary\_condition)

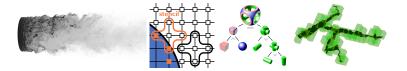
### Global reduction routines

- encapsulate MPI ones
- generic routines for min, max of local arrays, sum of scalars



OpenMP generic algebraic operations for 3-dimensional arrays and face-fields

x = a + b
call field\_operation\_add(a, b, x)


a = a + b\*c
call field\_operation\_add\_mult(a,
b, c)

•

S. Glockner & al. (I2M / TREFLE)

Journées Calcul & Simulation - Dec. 2021 11/27

- The main features of Notus
- Short focus of some proposed numerical methods
- GENCI HPC challenge 2020 at TGCC

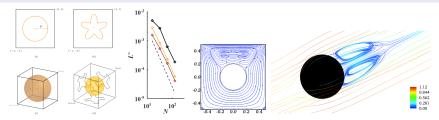


### Direct forcing method of Mittal [JCP2008]

- Extrapolate solution on the ghost nodes thanks a linear relation between the ghost nodes and their image nodes (△) Interpolation of the solution on the image point, Lagrange interpolation, p=2 or p=3 (4 or 9 points in 2D)
  - $\rightarrow$  non-compact stencils (loss of precision, non banded matrix, less efficient solver)

#### Regular grid (square cells)

Dirichlet : stencil size = 2,  $2^{nd}$  order Neumann : stencil size = 2,  $1^{st}$  order only  $\rightarrow$  stencil size = 3 ( $2^{nd}$  order)


 Improvements - through stencil size reduction - thanks to different class of shifting methods Ghost node shifting method for irregular grids
 Square shifting methods for regular grid applied to linear interpolation and extended to guadratic one



# Immersed Boundaries Method

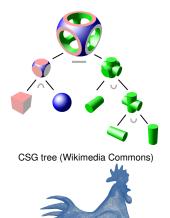
### 2D/3D verification and validation

- Laplacian: circle, 2D & 3D flowers
- Navier-Stokes: 3D channel, driven cavity with obstable, flow around a heated cylinder, around a sphere
- Stencil 1: 2<sup>nd</sup> order Dirichlet and 1<sup>st</sup> order Neumann (with several shifting methods)
- Stencil 2: 2<sup>nd</sup> order Neumann is possible with quadratic and double shifting method
- Conclusion : stencil size reduced, precision and regularity of the convergence also improved



### Performance analysis

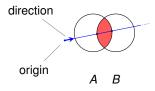
• CPU time. 3D pipe flow: x2.5 faster than original method. Flow past a sphere: x3 faster.


A. Jost, S. Glockner, Direct forcing immersed boundary methods: Improvements to the Ghost Node Method, *Journal of Computational Physics*, volume 438, 110371, 2021.

S. Glockner & al. (I2M / TREFLE)

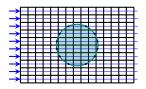
# Shapes representation & grid interaction

Shapes representation in Notus

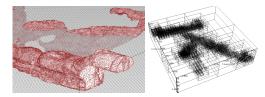

- Volumetric representation
- Boolean operations (CSG)
  - Union
  - Intersection
  - Difference
  - Complement
- Analytic shapes (primitives)
  - Half-space
  - Sphere
  - Box
  - Cylinder
  - Torus
- Surface mesh
  - Orientable
  - Inside/Outside
  - OBJ Wavefront format
- Transformations
  - Translation
  - Rotation
  - Scaling



Ray-tracing (list of intersection points + distance + normal)


Ray-tracing (list of intersection points + distance + normal)

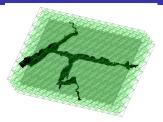





- Ray-tracing with  $\cup$ ,  $\cap$ , and  $\setminus$
- Jordan-Brouwer theorem
   → odd: inside
  - $\rightarrow$  even: outside

#### Ray-trace once per row




#### Space subdivision using octree (surface mesh only)



# Cartesian grid partitioning and complex geometries

### With immersed boundaries

- The number of inactive cells may be large
- Full inactive partitions
- → Extra computational cost (ex. Lascaux cave: 99% of inactive cells)
- Solution: remove inactive partitions and contract line or row of partitions (partition sliding)





### Lascaux cave example, 100 000 cells / core

- Global grid of 189 billion cells 99% of inactive cells
- Without sliding 3.2 billion cells 35% of inactive cells
- With sliding 3.0 billion cells 31% of inactive cells

S. Glockner & al. (I2M / TREFLE)

Notus CFD code presentation

Journées Calcul & Simulation - Dec. 2021 17/27

# Moment-of-Fluid method

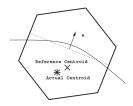
# Volume-of-Fluid - PLIC

- $\bullet~$  Volume fraction + **normal** to the interface  $\rightarrow$  linear construction of the interface
- Requires a 9 pts stencil (2D)



Original interface

| 0   | 0   | 0   | 0   | 0   |
|-----|-----|-----|-----|-----|
| 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| 0   | 0   | 0   | 0   | 0   |


VOF representation

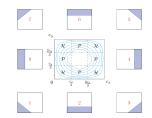
|  |  |  | 0.6 | • |
|--|--|--|-----|---|
|  |  |  |     |   |
|  |  |  |     |   |
|  |  |  |     |   |
|  |  |  |     |   |
|  |  |  |     |   |

PLIC reconstruction

### Moment-of-Fluid

- Volume fraction + centroid  $\rightarrow$  linear reconstruction that:
  - matches the volume fraction
  - minimises the discrepancy between the specified centroid and the centroid of the reconstructed polygon
- ho ightarrow 1 pt stencil, 2nd order
- Generalised to n materials

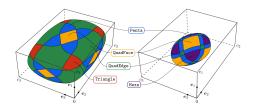



Source: Dyadechko & Shashkov (JCP 2006)

| 0.0 | 0.4 | 0.9 |
|-----|-----|-----|
| 0.3 | 1.0 | 1.0 |
| 0.6 | 1.0 | 1.0 |

# Moment-of-Fluid method

### Remove minimisation for Cartesian grids in 2D


- analytic form of the centroid curve (for a given volume fraction)
- from 20% to 300% faster
  - A. Lemoine, S. Glockner, J. Breil, Moment-of-Fluid Analytic Reconstruction on 2D Cartesian Grids, *Journal of Computational Physics*, vol. 328, pp. 131–139, 2017.



### Extension to 3D hexahedral cells

- uses explicit analytic formulas of the objective function
- more robust and 100x faster

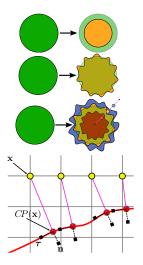
T. Milcent, A. Lemoine, Moment-of-Fluid Analytic Reconstruction on 3D Rectangular Hexahedrons, *Journal of Computational Physics*, 409, 109346, 2020



 $\rightarrow$  CPU time reduction as a source of motivation for new numerical methods

# Level-set and closest point methods

Surface tension computation

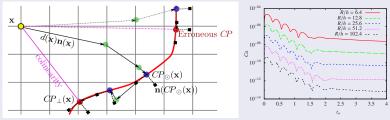

### Context

- Accurate computation of the curvature and precise transport of the interface is still challenging
- Continuum Surface Force [Brackbill]: σκ∇c
- $\kappa = \nabla \cdot (\frac{\nabla \phi}{|\nabla \phi|})$  on nodes where  $\kappa$  is not defined

### Solution

- Curvature computation based on second derivatives of the surface/interface → transport at least 4th order precise
- WENO5/Level-Set framework
- Accurate κ computation
  - compared to exact curvature
  - with minimum variation along the surface
  - with minimum variation following the normal direction
- $\kappa$  inside the domain =  $\kappa$  of the closest  $\Gamma$  point [Hermann, 2008]
- $\bullet \ \ \rightarrow \text{Extension of the curvature along the normal direction}$

 $\kappa(\mathbf{x}) = \kappa \left( CP(\mathbf{x}) \right)$ 




# Level-set and closest point methods

Surface tension computation

### Contribution

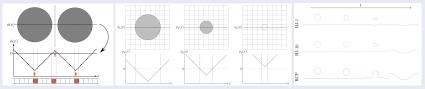
- Level-set ≠ distance function
- Improvement of the gradient descent to find the closest points to ensure colinearity to the interface normal



### Results

- Viscous column equilibrium: 4th order decrease of spurious current
- Advected viscous column: 4th order (not even 1 for VOF method)

M. Coquerelle, S. Glockner, A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, Journal of Computational Physics, 305, pp. 838-876, 2015.


S. Glockner & al. (I2M / TREFLE)

# Level-set and closest point methods

LS reinitialization and kinks detection

### Geometrical level set reinitialization method

- Use the CP approach to reinitialize and to detect precisely all the ill-defined points of the level set (kinks)
- Equivalent or even better results compared to solving the Hamilton-Jacobi equation



F. Henri, M. Coquerelle, P. Lubin, Geometrical level set reinitialization using closest point method and kink detection for thin filaments, topology changes and two-phase flows *Journal of Computational Physics*, vol. 448, 2022.

### Hybrid advection scheme WENO5 / HOUC5

- Efficient HOUC5 in smooth level-set region
- Robust WENO5 where the spatial discretization of the advection equation is subject to large error, i.e. where level-set is ill-defined.
- $\rightarrow$  CPU lowered with a factor up to 2.

F. Henri, M. Coquerelle, P. Lubin, *An efficient hybrid advection scheme in a level set framework coupling WENO5 and HOUC5 schemes based on kink detection*, accepted in Journal of Computational Physics.

S. Glockner & al. (I2M / TREFLE)

# High order momentum preserving method

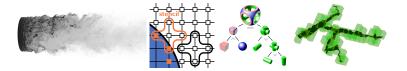
### Context

- Multiphase flows with high density ratio
- One-Fluid approach (VOF, MoF, Level-Set)
- Unconsistancy between mass and momentum flux can lead to instabilities and large errors

### Solution

- Use the conservative momentum form
- Add a mass conservation equation to predict density for momentum equation
- Use of a synchronized temporal integration for the advective part of the momentum and mass equations.
- Use of consistent spatial conservative schemes for both
- → Discontinuity of the momentum is advected at the same speed as a discontinuity of the density
- A high order approach (WENO5+RK2) proposed independent on the interface representation (VOF, MoF, Level-Set)




F. Desmons, M. Coquerelle, A generalized high-order momentum preserving (HOMP) method in the one-fluid model for incompressible two phase flows with high density ratio, Journal of Computational Physics, 437, 110322, 2021.

S. Glockner & al. (I2M / TREFLE)

Notus CFD code presentation

Journées Calcul & Simulation - Dec. 2021 23/27

- The main features of Notus
- Short focus of some proposed numerical methods
- GENCI HPC challenge 2020 at TGCC

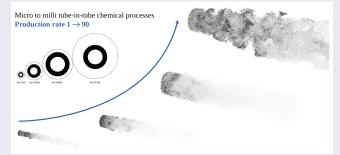


# Continuous microfluidic process to generate nanoparticles

with A. Erriguible (I2M/ICMCB), S. Marre (ICMCB)

### Macro-reactors vs micro-reactors. The scale-up challenge.

- Mixing of ethanol and supercritical CO2 in high pressure microfluidic system → Nucleation and growth of particles
- Fast mixing reduces particle size
  - $\rightarrow$  Turbulent flow in micro tubes (ICMCB experiments)
  - $\rightarrow$  very good mixing (compare to larger reactor) and particle size around 20 nm
- Direct Numerical Simulation: all resolved mixing scale (Kolmogorov  $\approx$  Batchelor)
- Limited production. From lab to industrial scale? Sizing-up or numbering-up? → Scale-up process, a pure numerical approach...


Large reactor (1cm). Injection velocity  $3m.s^{-1}$ ,  $R_{inj} = 90 \mu m$ , co-flow velocity  $0.001m.s^{-1}$ , Re = 432Fully explicit (except pressure), 390.10<sup>6</sup> cells, 3584 processors Micro reactor (0,3mm). Injection velocity 2.81 $m.s^{-1}$ ,  $R_{inj} = 50 \mu m$ , co-flow velocity 3.97 $m.s^{-1}$ , Re = 5505Fully explicit (except pressure), 300.10<sup>6</sup> cells, 3584 processors

S. Glockner & al. (I2M / TREFLE)

# HPC example: GENCI HPC challenge at TGCC

### Process scale-up

- From micro to milli tubes, TKE dissipation rate conserved
- Re=5245 → Re=71000, all resolved mixing scale (DNS)
- GENCI HPC challenge (TGCC), 40 millions CPU hours from 300 million to 11 billion cells, up to 131 072 processors
- ightarrow Still very fast mixing
- $\rightarrow$  Production x90





S. Glockner, A.M.D. Jost, A. Erriguible, Advanced petascale simulations of the scaling up of mixing limited flow processes for materials synthesis, accepted in Chemical Engineering Journal.

S. Glockner & al. (I2M / TREFLE)

Concentration volume rendering, Kelvin-Helmholtz instabilities, fast mixing, co-flow velocity effect, confinement effect

S. Glockner & al. (I2M / TREFLE)

Notus CFD code presentation

Journées Calcul & Simulation - Dec. 2021 27/27