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1. Introduction37

The resolution of pressure-velocity coupling for solving incompressible and compressible fluid prob-38

lems has been a subject of extensive research. The state-of-art methods, beyond their ability to answer39

the posed problem, have several aspects that need to be carefully addressed in order to define their40

applicability and robustness for high fidelity simulations, such as spatial and temporal convergence41

orders, multiphase flows with high density jump, outflow boundary conditions, CPU time, parallel42

efficiency, etc.43

The common classification for solving compressible flow problems divides methods into density-44

based and pressure-based. Both use the momentum equation to calculate velocity field and primarily45

differ in their approach to calculate the density and the pressure fields. Coming from the supersonic46

flow community [1, 2, 3, 4], density-based methods access the density by solving the mass conservation47

equation and use the equation of state for computing the pressure field. Though the method has been48

mainly designed for high Mach flows, several authors [5, 6, 7, 8, 9] have extended its utility to Ma less49

than 0.3 problems by addressing the inaccuracy which arise in these cases. Pressure-based methods,50

initially developed within the incompressible flow community [10, 11, 12] have been extended to low-51

mach or weakly compressible flows [13, 14, 15, 16, 17, 18, 19] and all-speed flows [20, 21, 22, 23, 24, 25,52

26]. They are characterized by solving implicitly a derived pressure equation from a combination of53

momentum and mass conservation. For problems with variable density, density field can be computed54

from an equation of state knowing the resolved pressure field. The proposed method in this article55

belongs to the pressure-based category of methods.56

For incompressible flows, pressure correction methods are commonly employed. These methods in-57

volve initially predicting the velocity field by solving the conservation of momentum equation, followed58

by a correction step to obtain a solenoidal velocity field by solving a pressure equation. A pioneering59

method, still widely used, was developed by Chorin [10]. It involves solving the prediction step by60

neglecting the pressure gradient in the momentum equation, followed by solving a Laplacian on the61

pressure, with the gradient used to ensure a divergence-free velocity field. While applicable to both62

single-phase and two-phase flows, this method is known to suffer from a low temporal convergence63

order. The Chorin method was later improved upon by Goda [27] and subsequently by Timmermans64

et al. [28], introducing the incremental pressure correction method and the rotational incremental65

pressure correction method, respectively. Unlike Chorin’s method, both Goda’s and Timmermans’66

methods incorporate the pressure gradient in the prediction stage. The unknown resolved variable67

in the correction stage is the time increment of the pressure. The precise mathematical analysis of68

these schemes has been carried out in the work of Guermond et al. [29]. An important parameter69

to characterize a resolution methodology is the order of convergence, both in space and time. In the70

aforementioned methods of Chorin [10] and Goda [27], the boundary condition on the pressure or its71

increment creates an artificial boundary layer that does not compromise the spatial precision of the72

discretization. However, there are significant differences in the order of temporal convergence among73

the original method and its variants. With Dirichlet boundary conditions applied on the velocity, the74

standard non-incremental method by Chorin [10] converges in time at order 1 for velocity and 1/2 for75

pressure. In comparison, the incremental standard method by Goda [27] converges at orders 2 and76

1 for velocity and pressure, respectively, while the incremental rotational method by Timmermans et77

al. [28] — reducing the articifial boundary layer — converges at orders 2 and 3/2 for velocity and78

pressure, respectively.79

In the context of compressible subsonic flows and pressure-based methods, the full form of the mass80

conservation equation and thermodynamic effects make the resolution of the pressure-velocity coupling81

even more complex. For more than two decades, several authors have proposed methods based on an82

elliptic equation for the pressure [30, 24, 25, 31, 32, 26, 17, 33, 34, 35] that can be considered as non83

incremental pressure correction methods for compressible flows. They have been successfully applied84

to single as well as multiphase flows. To the best of the authors’ knowledge, a general incremental85

pressure correction method has not yet been proposed.86

Further, though some works can be found where the authors have performed spatial convergence87

studies for compressible flows using manufactured or exact solutions [14, 36, 31, 37, 38, 39, 19], very few88

have presented temporal convergence studies [14, 35, 18, 19]. Among the limited work to the author’s89

knowledge, Moureau et al. [35] and Cang and Wang [19] only perform a temporal convergence study90

on the linear acoustic propagation problem with periodic boundary conditions to exibit second-order91

and first-order temporal accuracy of their methods, respectively. Hennink et al. [18] proposed a more92
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general manufactured solution of the compressible Navier-Stokes equation coupled with enthalpy equa-93

tion. On constant- and variable-density solutions with Dirichlet and Neumann boundary conditions,94

they observed a full second-order temporal accuracy of their proposed pressure-based discontinuous95

Galerkin method.96

This article proposes an incremental pressure correction method for general subsonic compressible97

flows (IPCMSF). While the traditional approach for constructing the correction step in this class of98

methods for incompressible flows relies on the null divergence property of the velocity field, our method99

for compressible flows involves leveraging the pressure equation [40], which includes a divergence term100

of the velocity. Furthermore, our proposed method couples the Navier-Stokes equation with the energy101

equation under its cp formulation and permits using any equation of state for density. The key feature102

of this work has been to achieve second-order spatial and temporal accuracy, for velocity, pressure,103

temperature and density. The verification process systematically present temporal convergence studies104

for different benchmarks of increasing complexity, from 0D test case to manufactured 2D solution with105

variable material properties and Dirichlet boundary conditions for velocity and temperature. The106

current work focuses only on single-phase flow with Dirichlet boundary conditions on velocity, while107

outlet/open boundary conditions and considerations for multiphase flow are beyond the scope of this108

article and will be covered up in the future work.109

The article is structured as follows: Section 2 presents a review of the governing equations for110

compressible flow in primitive variables; In Section 3, we propose the pressure increment correction111

method applied to subsonic compressible flows; Section 4 focuses on the numerical framework, em-112

ploying implicit discretization of the equations using the second-order finite volume method with first113

and second-order temporal orders; Section 5 illustrates various test cases for verification of the de-114

veloped method covering (a) isentropic injection and linear acoustic pulse propagation test cases and115

(b) a manufactured solution tailored to low to Mach numbers close to 0.6. These cases are utilized116

to compute spatial and temporal convergence orders; Section 6 presents numerical applications in 2D117

stationary and unsteady natural convection outside the Boussinesq approximation, focusing on various118

ranges of subsonic Mach numbers. Thermoacoustic wave propagation in perfect gas and supercritial119

carbon dioxide are also studied; Lastly, conclusions and perspectives are provided in Section 7.120

2. Governing equations121

2.1. Classical formulation of a compressible flow122

The governing equations of a compressible flow for a Newtonian fluid expresses the conservation of123

mass, momentum and energy in cp formulation, respectively124

∂ρ

∂t
+∇ · (ρv) = 0 , (1a)

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+∇ · (µγ̇)− 2

3
∇ (µ∇ · v) + ρg , (1b)

ρcp

(
∂T

∂t
+ v ·∇T

)
= Tβp

(
∂p

∂t
+ v ·∇p

)
+∇ · (λ∇T ) + Φd(v) . (1c)

These conservation equations are written in terms of primitive variables, with T (x, t) the temperature125

field, p(x, t) the pressure field, v(x, t) the velocity field, and ρ(x, t) the density field. In (1b), the strain126

rate tensor is defined as γ̇=∇v +∇vT , µ is the dynamic viscosity of the fluid, g is the gravitational127

acceleration, and we consider the Stokes’ hypothesis for the second coefficient of viscosity λµ=− 2
3µ.128

In (1c), cp denotes the specific heat capacity, βp=− 1
ρ

∂ρ
∂T

∣∣∣
p

is the isobaric thermal expansion coefficient,129

λ is the thermal conductivity, and Φd is the viscous dissipation rate of energy defined as130

Φd = −2µ

3
(∇ · v)2 + µ

2
γ̇ : γ̇ . (2)

For the sake of generalization, we have introduced Φd within the equations of the article, but this term131

will be ignored in all the simulations from Section 5.132

To close the system of equations introduced above, specifying the necessary initial and boundary133

conditions to prevent the problem being ill-posed is required along with an equation of state (EoS) for134
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density in addition to certain material properties x, e.g. isothermal compressibility, thermal expansion,135

speed of sound or heat capacity136

x = EoS(T, p) . (3)

2.2. Derivation of the pressure-energy equation137

An alternative form of the energy equation is derived by expanding the material derivative of138

pressure as a function of temperature and density139

Dp

Dt
=

∂p

∂ρ

∣∣∣∣
T

Dρ

Dt
+

∂p

∂T

∣∣∣∣
ρ

DT

Dt
, (4)

with the material derivative of any scalar and vector fields ∗ being defined as140

D∗
Dt

=
∂∗
∂t

+ v ·∇ ∗ . (5)

Using mass conservation (1a) and introducing the respective thermodynamic coefficients of isobaric141

thermal expansion and isothermal compressibility, defined as follows142

βp = −1

ρ

∂ρ

∂T

∣∣∣∣
P

and χT =
1

ρ

∂ρ

∂p

∣∣∣∣
T

, (6)

equation (4) reads143

Dp

Dt
= − 1

χT
∇ · v +

βp

χT

DT

Dt
. (7)

By applying the conservation of energy (1c) in conjunction with thermodynamic relations followed by144

few algebraic manipulations, we obtain145

Dp

Dt
= −ρc2∇ · v +

βpc
2

cp
(∇ · (λ∇T ) + Φd) , (8)

with c denoting the speed of sound. A more descriptive derivation of pressure-energy equation is146

provided in Appendix A.147

The pressure-energy conservation equation for incompressible flow reduces to ∇ ·v=0 (c → ∞ and148

βp = 0), i.e. Dρ
/
Dt= 0, which is consistent with the incompressibility limit. While several authors149

have already used a similar form of the conservation of energy expressed in terms of pressure (8) [20,150

41, 35, 30, 42, 43, 44, 40, 17, 33, 45], the originality of the proposed approach is to use it to derive151

the incremental pressure correction method. In addition, the proposed modelling of a compressible152

flow (1) (21) (8) as well as our method as presented in Section 3 make no assumptions about the type153

of fluid thereby making it feasible to cover a wide range of fluids using any appropriate EoS.154

3. The incremental pressure correction method155

3.1. Derivation of the equation for the time pressure increment156

An incremental pressure correction approach for compressible flow requires the development and157

the resolution of an equation specifically dedicated to the pressure increment, denoted by ϕ. Following158

the original incremental pressure correction method applied for incompressible flows [27], we write the159

pressure at next iteration as pn+1=pn + ϕ.160

Since density varies in compressible flows, the first step of the current method seeks to have an161

estimate of the density field, ρn+1, denoted by ρ†. This is obtained through extrapolation at the162

desired order, e.g. for first-order in time ρ†=ρn and for second-order in time with constant time step163

as ρ† = 2ρn − ρn−1. Henceforth, any variable x† will be an estimate of x at the order of the chosen164

temporal scheme.165
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A predicted velocity, denoted by v∗, is obtained by solving the momentum equation considering166

the pressure gradient at time tn167

ρ†
(
av∗ + bvn + cvn−1

∆t
+∇ · (v† ⊗ v∗)− v∗∇ · v†

)
= −∇pn +∇ ·

(
µ†γ̇∗)− 2

3
∇
(
µ†∇ · v∗)+ ρ†g ,

(9)

with a, b, c denoting the time discretization coefficients of first-order Euler backward scheme (a= 1,168

b=−1, c=0) or second-order Backward Differentiation Formula (a=3/2, b=−2, c=1/2). Equation (9)169

is written in its fully implicit form, but it could also be written in semi- or fully-explicit form depending170

on the scales of a given problem.171

Following Goda’s classical approach, we write the pressure increment equation by taking the differ-172

ence between (1b) evaluated at time tn+1 and (9), while neglecting the nonlinear and the divergence173

terms of the stress tensor, as174

vn+1 − v∗ = −k†ϕ∇ϕ , (10)

with k†ϕ=
∆t
aρ† . Taking the divergence of (10), it reads175

∇ · vn+1 −∇ · v∗ = −∇ ·
(
k†ϕ∇ϕ

)
. (11)

Compared to incompressible flows, where we have a divergence-free velocity, we aim to replace the176

velocity divergence term in compressible flows ∇ · vn+1 in (11) by the following relation coming from177

the discretized pressure-energy equation (8)178

apn+1 + bpn + cpn−1

∆t
+ v† ·∇p† = −(ρc2)†∇ · vn+1 +

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

)
. (12)

By rearranging the terms and by expressing ϕ, we obtain179

∇ · vn+1 =

(
−aϕ

∆t
− (a+ b)pn + cpn−1

∆t
− v† ·∇p† +

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

))/
(ρc2)† .

(13)

Finally, combining (13) and (11), we obtain the following elliptic equation with variable coefficients180

for the pressure increment181

aϕ

(ρc2)†∆t
−∇ ·

(
k†ϕ∇ϕ

)
= −∇ · v∗ + Ṡ†

ϕ , (14)

with the compressible pressure increment source term given by,182

Ṡ†
ϕ =

((
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

)
− v† ·∇p† − (a+ b)pn + cpn−1

∆t

)/
(ρc2)† . (15)

It is worth highlighting that when c → ∞ and βp=0, the pressure correction equation (14) is reduced183

to that of the incompressible case. Thus, the proposed method is valid in the limit of incompressible184

flows. This has been numerically verified. As the results are strictly identical to those given by the185

incremental pressure correction method for incompressible flows, they are not shown in this paper in186

order to better concentrate on various subsonic flows.187

3.2. Full semi-implicit system of equation188

This section sums up the proposed incremental pressure correction method for compressible flow.189

Firstly, the material properties, as well as temperature field are extrapolated in time. Then, a predicted190

velocity is computed solving v∗ as191

ρ†
(
av∗ + bvn + cvn−1

∆t
+∇ · (v† ⊗ v∗)− v∗∇ · v†

)
= −∇pn +∇ ·

(
µ†γ̇∗)− 2

3
∇
(
µ†∇ · v∗)+ ρ†g ,

(16)
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with the generic non-homogeneous Dirichlet boundary condition v∗ ·n=v0 ·n at the boundary of the192

domain, denoted by Γ.193

Then, the resolution of the pressure increment field is made by solving194

aϕ

(ρc2)†∆t
−∇ ·

(
k†ϕ∇ϕ

)
= −∇ · v∗ + Ṡ†

ϕ , (17)

with the homogeneous Neumann boundary condition ∂ϕ
∂n =0 at the boundary Γ (since vn+1 ·n=v∗ ·n195

and given (10)).196

After solving ϕ, velocity and pressure are updated during a correction step as,197

vn+1 = v∗ − k†ϕ∇ϕ , (18)
pn+1 = pn + ϕ . (19)

Once the velocity and pressure are corrected, the next step is to compute the corresponding tem-198

perature field using the (cp, T ) formulation of the energy conservation. The following is written in an199

implicit form200

ρ†c†p

(
aTn+1 + bTn + cTn−1

∆t
+ (∇ · (vT )− T∇ · v)n+1

)
(20)

− Tn+1β†
p

(
apn+1 + bpn + cpn−1

∆t
+ vn+1 ·∇pn+1

)
= ∇ · (λ†∇Tn+1) + Φn+1

d .

Finally, our pressure-based method uses the EoS to update the density and thermophysical prop-201

erties of the fluid just before moving to the next time iteration:202

xn+1 = EoS(Tn+1, pn+1) . (21)

3.3. Note on the treatment of the volume penalization method203

The immersed boundary of a solid can be treated by adding a volume penalization term χ (v − v0)204

to the right hand side of the momentum equation. On a Cartesian grid and obstacles whose boundaries205

are parallel to the grid directions, a large value (1020) of the parameter χ allows to assign the velocity206

v equal to the given velocity v0.207

In such an approach, the incremental pressure correction method needs to be slightly corrected in208

order to maintain a Neumann boundary condition on the pressure increment at the immersed boundary.209

It can be easily shown that k†ϕ coefficient has to be replaced by210

k†ϕ =
∆t

aρ† + χ∆t
. (22)

In a finite volume code, a large value of χ on the face of the cell at the boundary (geometrically211

interpolated from cell centre values) penalized the pressure increment derivative to zero and thus212

unconnect fluid and solid domains. This method converges spatially at first-order only. This method213

can be easily implemented by considering a Jacobi linear system preconditioning that locally reduces214

matrix coefficient to 1 instead of a value around 1020.215

4. Numerical methods216

The novel method presented above has been implemented in an in-house CFD code developed in217

Fortran 2008 under a free software license, named Notus [46]. Notus employs the Finite Volume Method218

on a Cartesian staggered grid, allowing simulation of multiphysical problems such as single-phase and219

multiphase flows with both mass and heat transfer.220

In pursuit of computational efficiency and scalability, the code is designed for high-performance221

parallel computing up to petascale simulations [47]. The pressure-velocity coupling for multiphase flows222

is achieved through the incremental pressure correction methods originally developed by Goda [27].223

For monophasic flows, the rotational incremental pressure correction method of Timmermans et al. [28]224

is employed, ensuring better convergence orders.225
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Notus offers both first-order (Euler backward) and second-order temporal discretization with Back-226

ward Differentiation Formula (BDF2). For the governing equations, implicit discretization (centered227

second-order, upwind first and second-order) as well as explicit schemes, including Weighted Essentially228

Non-Oscillatory (WENO) and Lax-Wendroff (LW) with Total Variation Diminishing (TVD) schemes,229

are available. This flexibility caters to a diverse range of CFD applications. For all the presented230

test cases in this article, an implicit second-order scheme is used for the advection terms, diffusion,231

and stress terms. BDF2 second-order time discretization is also employed, except when specifically232

mentioned for the first-order Euler scheme. The advected pressure gradient term of (15) is discretized233

with upwind second-order scheme and a decentering at boundaries of the domain to avoid boundary234

condition on pressure.235

Notus utilizes advanced iterative solvers and multigrid preconditioners within the Hypre library [48],236

or it can use direct solvers from the MUMPS library [49]. The credibility and reliability of the code237

are established through a thorough verification, validation, and non-regression environment. Notus238

has been widely used in various scientific contexts [47, 50, 51, 52, 53, 54].239

5. Verification240

Verification and validation of a CFD code are essential steps in establishing a reliable numerical241

tool. These concepts are extensively discussed in [55] and [56], and are more broadly addressed in [57].242

Verification is the process of determining whether the implementation of a model and its associated243

methods accurately represents its conceptual description and solution. The fundamental strategy of244

verification involves the identification, quantification, and reduction of errors in the numerical model245

and its solution. Code verification encompasses solution verification on a set of problems for which246

the exact solution (available only for simplified problems) is known or manufactured. The latter does247

not necessarily require a connection with the reality of a physical phenomenon. Verification thus248

offers evidence that the continuous model is correctly solved by the discrete approach chosen in the249

calculation code. It is primarily a mathematical and computational process.250

For each verification test case of this section, we present convergence studies considering an ana-251

lytical solution. Tables of the section present absolute euclidean norm ||εX ||L2
, infinity norm ||εX ||L∞252

of the field X and the respective orders of convergence.253

5.1. Isentropic injection in a square cavity254

As a first verification test case, we present the isentropic injection problem. A square cavity of255

length L=1 mm is filled with air considered as a perfect gas (R=287 JK−1 kg−1, γ = cp/cv =1.4).256

At initial time, the following thermodynamic state is imposed (T0, p0, ρ0)=(300K, 101325Pa, p0

RT0
). A257

fluid in the same thermodynamic state as the cavity is injected from the top with a vertical velocity258

vy0 = −1.0×10−2 ms−1. The dimensionless parameters of the problem are respectively the initial259

Reynolds, Mach and Prandtl numbers Re0 = ρ0u0L/µ0 = 6.36×10−1, Ma0 = u0/c0 = 5.37×10−4,260

Pr0=cpµ0/λ0=7.04×10−1.261

The analytical solution of the problem can be found from [58]. Under the Stokes hypothesis262

(Re ≤ 1), the test case exhibits a linear velocity field vy=−v0y/L, with a constant velocity divergence263

∇ · v=−v0/L. Considering our hypothesis, equation (1a) reduce to 1
ρ
dρ
dt =v0 and after integration we264

obtain ρ/ρ0=exp(v0(t− t0)/L). Using the law of reversible adiabatic process, i.e. pρ−γ=cst, and the265

perfet gas EoS, the thermodynamic solution of the problem starting at t0= 0 s reads to266

p = p0 exp(γtv0/L) , (23a)
T = T0 exp((γ − 1)tv0/L) , (23b)
ρ = ρ0 exp(tv0/L) . (23c)

Thermodynamic variables do not vary in space (0D benchmark) allowing temporal convergence study267

without any effect of spatial error (linear velocity).268

For velocity boundary conditions, left and right boundaries have slip conditions, top has a Dirichlet269

condition for injection vtop=[0,−v0]
T and bottom has a no-slip condition. For temperature boundary270

conditions, all the boundaries have homogeneous Neumann conditions.271

Table 1 presents the temporal convergence study. Temporal second-order is achieved for pressure,272

density and temperature, for both L2 and L∞ norms. We do not present velocity errors in the table273
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∆t in s ||εp||L2 order ||εp||L∞ order ||εT ||L2 order
4.00×10−4 1.352×10−2 n/a 1.352×101 n/a 3.278×10−7 n/a
2.00×10−4 3.389×10−3 1.996 3.389 1.996 8.157×10−8 2.007
1.00×10−4 8.482×10−4 1.998 8.483×10−1 1.998 2.037×10−8 2.001
5.00×10−5 2.120×10−4 2.000 2.121×10−1 2.000 5.144×10−9 1.986
2.50×10−5 5.284×10−5 2.004 5.294×10−2 2.002 1.339×10−9 1.942
1.25×10−5 1.304×10−5 2.019 1.314×10−2 2.010 3.859×10−10 1.794

∆t in s ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
4.00×10−4 3.278×10−4 n/a 1.076×10−7 n/a 1.076×10−4 n/a
2.00×10−4 8.157×10−5 2.007 2.696×10−8 1.996 2.696×10−5 1.996
1.00×10−4 2.038×10−5 2.001 6.749×10−9 1.998 6.750×10−6 1.998
5.00×10−5 5.150×10−6 1.984 1.687×10−9 2.000 1.688×10−6 1.999
2.50×10−5 1.345×10−6 1.937 4.209×10−10 2.003 4.218×10−7 2.001
1.25×10−5 3.924×10−7 1.777 1.043×10−10 2.013 1.051×10−7 2.004

Table 1: Temporal order accuracy of the isentropic injection test case. First time step ∆t=4×10−4 s equal to CFL=
1.78×104. Mesh size 1282, tf =1×10−1 s.

because, whatever the time step, the exact velocity is reached as expected with errors close to the274

resolution tolerance of linear systems (10−14). As the problem is 1D for velocity and 0D for the other275

variables, conclusions do not change whatever be the mesh size form 82 to 1282. Let us note the276

significant variations in pressure, temperature and density, final values at time tf = 1×10−1 being277

3.0955×105 Pa, 4.4755×102 K and 3.1988 kgm−3, respectively.278

5.2. Linear acoustic pulse propagation279

The second test case investigates the isothermal problem of a linear acoustic wave propagation280

considering an inviscid perfect gas fluid (µ=0) with its EoS281

∆p = c20∆ρ , (24)

with ∆p the pressure perturbation, ∆ρ the density perturbation and c0=
√
γRT0 the constant speed282

of sound of the medium. This benchmark has been used in the past to test several novel compressible283

solvers [14, 35, 26, 33, 19], often to carry out temporal convergence studies. Besides its simplicity and284

the existence of analytical solutions, this case allows a clear evaluation of the numerical diffusion and285

dispersion of the proposed numerical schemes.286

We consider a monodimensional periodic domain of length L=1 m. For velocity boundary condi-287

tions, left and right boundaries have periodic conditions while top and bottom have slip conditions.288

At initial time, we consider the thermodynamic state (T0, p0, ρ0)=(300K, 105Pa, p0

RT0
) and a Gaussian289

acoustic pressure wave defined as290

p(x, t0) = p0 +∆p0 exp(−
x2

2Σ2
) , (25)

with ∆p0 the pulse amplitude and Σ a pulse length control parameter. The initial parameter of the291

pulse is set to ∆p0=102 Pa and Σ=0.1 m like in [33]. The dimensionless parameters of the problem292

are respectively Re0=∞ and Ma0=7.14×10−4.293

From the resolution of the d’Alembert equation, analytical solutions are available for all fields. The294

pressure, density and velocity solutions are respectively295

p(x, t) = p0 +∆p0 exp

(
− (x− c0t)

2

2Σ2

)
, (26)

ρ(x, t) = ρ0 +
∆p0
c20

exp

(
− (x− c0t)

2

2Σ2

)
, (27)

u(x, t) =
∆p0
ρ0c20

exp

(
− (x− c0t)

2

2Σ2

)
. (28)
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Figure 1: Acoustic pressure field variation at initial state t = 0 s (dashed line) and at tf = 2.88×10−3 s for various
CFL=∆tc0/∆x (solid line colored by CFL value). (a) Euler backward temporal scheme. (b) BDF2 temporal scheme.
Mesh size 512x8.

with c0t the distance travelled by the wave.296

Figure 1a presents a graphical temporal convergence study of the relative pressure field at tf =297

c0/L=2.88×10−3 s (time travelled by the wave until it returns to its initial position) for various acoustic298

Courant number, noted CFL. The implicit treatment of pressure increment avoids a stability limitation299

related to acoustic time step as we do not find any stability limit (still stable at CFL ∼ 4×103 data not300

shown). For very large CFL and Euler backward temporal scheme, the acoustic wave is totally diffused301

but, note that for CFL=4, 8 the wave is still well predicted. We observe the relative low diffusivity of302

the first-order temporal scheme Euler backward at CFL=4 compared to literature results [33] which303

obtain similar value of the maximum of the relative pressure with a low Courant number value (see304

CFL=0.5 numerized curve from [33] in Fig. 1a).305

Additionally, in Fig. 1b, it is noteworthy that the BDF2 scheme, with second-order temporal306

accuracy, exhibits significantly lower numerical diffusion compared to the Euler scheme. This results307

in a pressure profile that closely aligns with the exact solution at CFL=2. An error of less than 1%308

is observed compared to 20% with the Euler scheme. Using the BDF2 temporal scheme, the correct309

observation of acoustic propagation is possible while considering CFLs greater than unity.310

In Table 2, the temporal convergence study of this test case with the BDF2 scheme is presented with311

a final time tf = L/cs = 2.88×10−3 s. Second-order temporal convergence is confirmed for pressure,312

velocity, and density, for both L2 and L∞ norms. We also present in Tab. 3 the spatial convergence313

study with a constant Courant number CFL=1. Second-order spatial convergence is confirmed for all314

fields considering both L2 and L∞ norms.315

5.3. Manufactured solutions316

The technique known as the method of manufactured solutions involves the development of an a317

priori known analytical solutions for the governing equations. The procedure introduces modifications318

of the original equations (1) by adding source term on the right-hand side of equations (see Appendix319

B). These source terms are considered as input, for reproducing the manufactured solution.320
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∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order
1.60×10−4 4.568×10−2 n/a 9.698×10−2 n/a 1.842×101 n/a
8.00×10−5 2.304×10−2 0.987 5.057×10−2 0.939 9.293 0.987
4.00×10−5 7.871×10−3 1.550 1.846×10−2 1.454 3.176 1.549
2.00×10−5 1.986×10−3 1.987 4.873×10−3 1.922 8.017×10−1 1.986
1.00×10−5 3.272×10−4 2.601 7.510×10−4 2.698 1.321×10−1 2.601

∆t in s ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
1.60×10−4 3.911×101 n/a 1.528×10−4 n/a 3.245×10−4 n/a
8.00×10−5 2.039×101 0.940 7.710×10−5 0.987 1.692×10−4 0.940
4.00×10−5 7.451 1.452 2.635×10−5 1.549 6.182×10−5 1.452
2.00×10−5 1.968 1.920 6.651×10−6 1.986 1.633×10−5 1.920
1.00×10−5 3.036×10−1 2.697 1.096×10−6 2.601 2.519×10−6 2.697

Table 2: Temporal order accuracy of the linear acoustic pulse test case. First time step ∆t = 1.6×10−4 s equal to
CFL=2.84×101. Mesh size 512×8, tf =2.88×10−3 s.

Mesh ||εv||L2 order ||εv||L∞ order ||εp||L2 order
16x8 5.723×10−2 n/a 1.115×10−1 n/a 2.308×101 n/a
32x8 3.040×10−2 0.913 6.849×10−2 0.704 1.226×101 0.913
64x8 1.089×10−2 1.481 2.650×10−2 1.370 4.394 1.488
128x8 2.852×10−3 1.933 6.872×10−3 1.947 1.151 1.933
256x8 5.231×10−4 2.446 1.181×10−3 2.540 2.113×10−1 2.444
512x8 1.382×10−4 1.921 2.832×10−4 2.061 5.567×10−2 1.922

Mesh ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
16x8 4.378×101 n/a 1.915×10−4 n/a 3.632×10−4 n/a
32x8 2.804×101 0.643 1.017×10−4 0.913 2.326×10−4 0.643
64x8 1.067×101 1.394 3.645×10−5 1.481 8.853×10−5 1.394
128x8 2.768 1.947 9.550×10−6 1.932 2.296×10−5 1.947
256x8 4.768×10−1 2.537 1.753×10−6 2.446 3.955×10−6 2.537
512x8 1.140×10−1 2.064 4.619×10−7 1.924 9.457×10−7 2.064

Table 3: Spatial order accuracy of the linear acoustic pulse test case. Courant number CFL=1, tf =2.88×10−3 s.
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In literature, few manufactured solutions for compressible subsonic flows have been developed [59,321

36, 37, 18] to validate novel algorithms. After a detailed analysis of the nature and properties of already322

proposed solutions, we aim to define a generic, well posed, and reproducible manufactured solution323

(see Appendix B). We thus propose the following two-dimensional compressible Navier–Stokes solution324

for a perfect gas in a square domain Ω = [0, 1]× [0, 1] where the pressure p(x, y, t), the temperature325

T (x, y, t), the density ρ(x, y, t) and the velocity u=(u, v)T read to326

p = p0 + p1 sin(πy) sin(πx) cos(2πft) , (29a)
T = T0 + T1 sin(πy) cos(πx) cos(2πft) , (29b)
ρ = p

/
RT , (29c)

u = u0 sin
2(πx) sin(2πy) cos(2πft) , (29d)

v = u0 sin(2πx) sin
2(πy) cos(2πft) , (29e)

with f the frequency in Hz, p0 and p1 the reference and fluctuation pressure in Pa, T0 and T1 the327

reference and fluctuation temperature K, u0 the reference velocity in ms−1 and R the universal gas328

constant in JK−1 kg−1. The perfect gas EoS permits the verification of the solver with time- and space-329

dependent material properties, except for dynamic viscosity and conductivity considered as constant330

here.331

The proposed solution is derived from the manufactured solution initially proposed for incompress-332

ible flows [29]. One notices good properties of the solution to simulate a subsonic flow with incremental333

pressure correction method as the non-zero pressure gradient at boundary or the non-zero divergence334

field. Time-dependent Dirichlet boundary conditions are applied for temperature fields. For velocity335

boundary conditions, all the boundaries have no-slip conditions while Neumann homogeneous bound-336

ary condition is imposed on pressure increment.337

To investigate the accuracy of the resolved fields and different ranges of dimensionless parameters,338

three specific manufactured solutions are introduced in the following three subsections by tuning pa-339

rameters. It is helpful to test the proposed method on low Mach solution as encountered in compressible340

natural flows (e.g. Ma0' 1×10−3), as well on solution with much larger Mach (e.g. Ma0' 0.6), The341

following parameters will remain constant for all three cases : f=700 Hz, p0=105 Pa, p1=2×103 Pa,342

T0=300K, R=287 JK−1 kg−1, γ=1.4. µ=1.85×10−5 Pa s. All the convergence studies consider the343

final time tf =2×10−3 s corresponding more than one and a half times the period T =1/f .344

5.3.1. Isothermal high Mach subsonic manufactured solution345

The isothermal flow case considers the following parameters T1=0 K, u0=200 m s−1. We present346

this unsteady flow solution for whoever wants to analyse the temporal order without considering the347

coupling of the Navier–Stokes equations and the energy equation. The dimensionless parameters of348

this case are Re0=1.26×107, Ma0=5.76×10−1.349

Table 4 presents the temporal convergence study. Second-order convergence in time is achieved for350

velocity, pressure, and density, considering both the L2 and L∞ norms.351

5.3.2. Anisothermal high Mach subsonic manufactured solution352

A fully compressible subsonic case is now studied considering the following parameters T1=40 K,353

u0=200 m s−1, λ=10−2Wm−1 K−1. We investigate temporal order of convergence on a test case with354

the following dimensionless parameters: Re0=1.26×107, Ma0=5.76×10−1 and Pr0=1.86.355

Firstly, we present in Fig 2 the variations of the primitive variables of the proposed anisothermal356

manufactured solution. Fig 2a,b,c,d show respectively pressure, temperature, divergence and velocity357

fields while Fig 2e,f present respectively the local variations of Mach and Reynolds numbers. One may358

notice strong divergence variations (see Fig 2c) and a maximal local Mach number at t=0 s of 0.6 (see359

Fig 2e), twice the incompressible limit.360

We present in Table 5 the temporal convergence study of the case. The proposed method reaches361

the temporal second-order for all the resolved fields, for both L2 and L∞ norms. We also present in362

Tab. 6 the spatial convergence study with a constant Courant number of CFL=1 for each simulation363

necessary to attenuate the temporal error. Second-order spatial convergence is also confirmed for all364

fields considering both L2 and L∞ norms.365
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∆t in s ||εv||L2
order ||εv||L∞ order ||εp||L2

order
2.00×10−4 3.932×101 n/a 6.442×101 n/a 5.853×103 n/a
1.00×10−4 1.497×101 1.393 2.570×101 1.326 1.861×103 1.653
5.00×10−5 4.289 1.803 7.931 1.696 5.325×102 1.805
2.50×10−5 1.120 1.938 2.116 1.906 1.402×102 1.925
1.25×10−5 2.882×10−1 1.958 5.489×10−1 1.947 3.594×101 1.964
6.25×10−6 7.739×10−2 1.897 1.479×10−1 1.892 9.641 1.898

∆t in s ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 1.467×104 n/a 6.798×10−2 n/a 1.704×10−1 n/a
1.00×10−4 4.935×103 1.572 2.161×10−2 1.653 5.731×10−2 1.572
5.00×10−5 1.625×103 1.602 6.185×10−3 1.805 1.887×10−2 1.602
2.50×10−5 4.387×102 1.889 1.629×10−3 1.925 5.095×10−3 1.889
1.25×10−5 1.131×102 1.956 4.175×10−4 1.964 1.313×10−3 1.956
6.25×10−6 3.006×101 1.911 1.120×10−4 1.898 3.492×10−4 1.911

Table 4: Temporal order accuracy of the isothermal manufactured solution. First time step ∆t= 2×10−4 s equal to
CFL=1.78×101. Mesh size 2562 and tf =2×10−3 s.

∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.753×101 n/a 7.456×101 n/a 6.230×103 n/a 1.975×104 n/a
1.00×10−4 1.366×101 1.458 2.493×101 1.581 1.885×103 1.724 5.279×103 1.904
5.00×10−5 3.874 1.818 6.913 1.850 5.200×102 1.858 1.548×103 1.770
2.50×10−5 1.012 1.936 1.843 1.907 1.352×102 1.944 4.018×102 1.946
1.25×10−5 2.600×10−1 1.961 4.832×10−1 1.932 3.438×101 1.975 1.059×102 1.924
6.25×10−6 6.917×10−2 1.910 1.324×10−1 1.868 9.065 1.923 2.881×101 1.878

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 7.616 n/a 3.153×101 n/a 5.457×10−2 n/a 1.978×10−1 n/a
1.00×10−4 2.519 1.596 8.642 1.867 1.711×10−2 1.673 4.451×10−2 2.152
5.00×10−5 6.835×10−1 1.882 2.403 1.847 4.728×10−3 1.856 1.385×10−2 1.684
2.50×10−5 1.767×10−1 1.952 6.304×10−1 1.930 1.234×10−3 1.938 4.020×10−3 1.785
1.25×10−5 4.528×10−2 1.964 1.617×10−1 1.963 3.159×10−4 1.966 1.084×10−3 1.890
6.25×10−6 1.222×10−2 1.889 4.300×10−2 1.911 8.418×10−5 1.908 3.079×10−4 1.816

Table 5: Temporal order accuracy of the anisothermal high Mach subsonic manufactured solution. First time step
∆t=2×10−4 s equal to CFL=1.78×101. Mesh size 2562 and tf =2×10−3 s.

Mesh ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
64x64 3.055 n/a 5.712 n/a 3.811×102 n/a 1.125×103 n/a
128x128 8.000×10−1 1.933 1.517 1.913 9.913×101 1.943 3.041×102 1.888
256x256 2.022×10−1 1.984 3.911×10−1 1.956 2.494×101 1.991 7.787×101 1.965
512x512 5.094×10−2 1.989 9.963×10−2 1.973 6.254 1.995 2.035×101 1.936

Mesh ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
64x64 5.259×10−1 n/a 1.835 n/a 3.572×10−3 n/a 1.088×10−2 n/a
128x128 1.348×10−1 1.963 4.789×10−1 1.938 9.270×10−4 1.946 3.054×10−3 1.833
256x256 3.394×10−2 1.990 1.216×10−1 1.978 2.338×10−4 1.987 8.115×10−4 1.912
512x512 8.539×10−3 1.991 3.841×10−2 1.662 5.892×10−5 1.988 2.805×10−4 1.533

Table 6: Spatial order accuracy of the anisothermal high Mach subsonic manufactured solution. Courant number CFL=1
and tf =2×10−3 s.
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Figure 2: Visualisation of the high Mach anisothermal solution within the square domain Ω=[0, 1]×[0, 1] at t=0 s. (a)
Relative pressure field ∆p= p − p0. (b) Temperature field T . (c) Divergence of the velocity field ∇ · u. (d) Velocity
vector field u (arrows) and its magnitude ||u||. (e) Local Mach number Ma. (f) Local Reynolds number Re.
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∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.732×10−1 n/a 8.834×10−1 n/a 2.155×102 n/a 4.502×102 n/a
1.00×10−4 1.392×10−1 1.423 3.185×10−1 1.472 6.529×101 1.723 1.552×102 1.537
5.00×10−5 4.116×10−2 1.758 9.162×10−2 1.798 1.830×101 1.835 5.266×101 1.559
2.50×10−5 1.105×10−2 1.897 2.398×10−2 1.934 4.728 1.952 1.438×101 1.873
1.25×10−5 2.894×10−3 1.933 6.335×10−3 1.921 1.196 1.983 3.774 1.930
6.25×10−6 8.596×10−4 1.751 1.840×10−3 1.784 3.346×10−1 1.838 1.179 1.678

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 4.166 n/a 1.349×101 n/a 1.857×10−2 n/a 6.571×10−2 n/a
1.00×10−4 8.746×10−1 2.252 2.500 2.432 3.712×10−3 2.323 1.190×10−2 2.465
5.00×10−5 1.903×10−1 2.201 4.338×10−1 2.527 7.819×10−4 2.247 2.099×10−3 2.503
2.50×10−5 4.569×10−2 2.058 1.232×10−1 1.816 1.816×10−4 2.106 5.321×10−4 1.980
1.25×10−5 1.139×10−2 2.004 3.835×10−2 1.683 4.416×10−5 2.040 1.577×10−4 1.754
6.25×10−6 2.871×10−3 1.988 1.485×10−2 1.369 1.089×10−5 2.020 5.649×10−5 1.481

Table 7: Temporal order accuracy of the anisothermal low Mach manufactured solution. First time step ∆t=2×10−4 s
equal to CFL=1.78×101. Mesh size 2562 and tf =2×10−3 s.

5.3.3. Anisothermal low Mach subsonic manufactured solution366

A low Mach fully compressible subsonic case in now studied considering the following parameters367

T1=40 K, u0=2 ms−1, λ=10−2 Wm−1 K−1. We investigate temporal order of convergence on a test368

case with the following dimensionless parameters: Re0=1.26×105, Ma0=5.76×10−3 and Pr0=1.86,369

We present in Table 7 the temporal convergence study of the case. The method reaches the temporal370

second-order for all the resolved fields, for both L2 and L∞ norms.371

6. Validation372

Validation is the process that assesses the extent to which a numerical model accurately represents373

a physical phenomenon for the purpose of utilizing the results. It entails comparing precise numerical374

solutions with experimental (or theoretical) results. It’s important to note that validation doesn’t375

assume the experimental measurements are inherently more accurate than the numerical solutions;376

rather, it considers them as the most adequate means available for representing the reality in the377

context of validation. Benchmarking the numerical solutions obtained with different codes is also a378

crucial component of the validation process.379

The validation section is structured around both stationary and unsteady test cases. Initially,380

the proposed method is validated on a well-known low Mach compressible steady natural convection381

benchmark, encompassing cases with constant and variable viscosity. Following that, validation is382

extended to a natural convection test case in the presence of an immersed boundary. In the second383

part, validation is conducted on two unsteady 1D thermoacoustic wave generation and propagation384

scenarios. The first involves a Dirichlet boundary condition and a perfect gas, while the second385

incorporates a heat flux and operates very close to the liquid-vapor critical point. Finally, validation386

is carried out on a 2D unsteady natural convection case at a Mach number of 0.1.387

6.1. Compressible steady natural convection benchmark388

Compressible flows can occur due to large temperature variations, resulting in large density changes389

for which the Boussinesq approximation and thus the incompressible assumption is no longer valid.390

In this section, we validate the proposed method by reproducing the classical case T1 and case T2391

steady-state benchmarks of Le Quéré et al. [15]. From the nomenclature of [15], case T1 refers to392

constant viscosity and conductivity while the case T2 considers Sutherland law for viscosity and393

conductivity (see Appendix C for parameters values). We thus consider a differentially heated square394

cavity of length L subject to gravitational field g, filled with air considered as a perfect gas, with the395

following initial dimensionless parameters: temperature ratio ε = Thot−Tcold

Thot+Tcold
= 0.6, Rayleigh number396

Ra0 =Pr0
g∆TL3βp0ρ

2
0

µ2
0

= 106, Prandtl number Pr0 = 7.1×10−1. Initial Mach number (considering the397

characteristic velocity u0 =
λ0

ρ0cpL

√
Ra0 [60]) are Ma0 =1.78×10−3 for case T1 and Ma0 =2.15×10−3

398

for case T2, respectively.399
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Mesh Nusselt (left) order Nusselt (right) order Mean relative pessure in Pa order
64x64 9.0509 n/a 9.0811 n/a −1.7907×104 n/a
128x128 8.9110 n/a 8.9184 n/a −1.5438×104 n/a
256x256 8.8711 1.810 8.8728 1.834 −1.4809×104 1.971
512x512 8.8598 1.821 8.8602 1.864 −1.4669×104 2.170
1024x1024 8.8564 1.741 8.8565 1.770 −1.4643×104 2.452
Extrapolation 8.8550 n/a 8.8550 n/a −1.4637×104 n/a

Mesh Mean velocity in ms−1 order Mean temperature in K order
64x64 4.9700×10−2 n/a 5.6453×102 n/a
128x128 4.8601×10−2 n/a 5.6823×102 n/a
256x256 4.8313×10−2 1.929 5.6930×102 1.791
512x512 4.8245×10−2 2.077 5.6957×102 1.967
1024x1024 4.8230×10−2 2.183 5.6964×102 1.995
Extrapolation 4.8225×10−2 n/a 5.6966×102 n/a

Table 8: Spatial order accuracy of the compressible natural convection case T1 [15]. CFL=400, tf =20 s .

The boundary conditions of both cases are as follows. For temperature, the top and bottom walls400

are adiabatic conditions and left and right have respectively heated and cooled Thot = 960 K and401

Tcold = 240 K. For velocity boundary conditions, all the boundaries have no-slip conditions. Both402

cases have been simulated considering an adaptative time step driven by an acoustic CFL=4×102. The403

implicit treatment of the pressure computation permits to consider large CFL number which amounts404

to naturally filtering acoustic waves.405

The objective of the present validation is to compare the reference values of the spatial average406

side walls Nusselt numbers Nuleft,right and cavity maximal pressure at steady state from [15] with our407

simulations. We propose a final time tf =20 s regarding the previous final time proposed [33] which408

verifies the steady state residuals of our simulations.409

Figure 3a,b presents respectively the pseudocolor plot of temperature field along with the velocity410

vectors field of the case T1 and the temperature profile comparison at y=L/2 between T1 and T2 cases.411

Simulation results of the T2 case [61, 62] are also plotted in Fig. 3b. The simulation of case T2 with our412

full compressible modelling well reproduces the temperature profile solution [61, 62] while most of the413

benchmark contributions were obtained considering the low Mach number approximation [15, 62]. To414

the author’s knowledge, temperature profile solution of the case T1 is unavailable in the literature. We415

plot in Fig. 3b this horizontal temperature profile and we validate this case in the following regarding416

Nusselt number and maximal pressure. As this configuration is simpler than T2, this approach is417

acceptable.418

We propose in Table 8 a spatial convergence study of case T1 for regular meshes at CFL = 400419

also with Richardson extrapolated values. We observe a spatial second-order convergence on Nusselt420

numbers, spatial averaged pressure, temperature, and velocity.421

Reference values of T1 are N̄u=8.859 78 and pmax/p0=0.856 338 [15]. By carefully read the list of422

pitfalls and recommendations proposed by the authors of the benchmark [15], we verified the equality423

of the averaged left and right Nusselt number which for 10242 mesh are identical to three significant424

digits (NuL −NuR=9.48×10−5).425

On the mesh size 10242, we found for the maximal pressure pmax/p0 = 0.855 486. According to426

reference values [15], the absolute relative differences are respectively 9.95×10−2 % for the maximal427

pressure and 3.76×10−2 % for the Nusselt number (left value chosen).428

Table 9 shows the spatial convergence study of case T2 for regular meshes at CFL=400 also with429

Richardson extrapolated values. Here, spatial second-order is observed on spatial averaged relative430

pressure, temperature and velocity, and varying between 1.63-1.85 for left and right Nusselt numbers.431

Reference values of this case are Nu = 8.6866 and pmax/p0 = 0.924 487 [15]. On the mesh size 10242,432

we found for the maximal pressure pmax/p0 = 0.923 744 and for the absolute difference between left433

and right Nusselt number 1.4×10−4. According to reference values [15], the relative differences are434

respectively 7.4×10−4 % for the maximal pressure and 7.8×10−4 % for the Nusselt number (left value435

chosen).436

In addition to the classical presented data for this benchmark, we propose in Fig. 4a the local437

Mach number at steady state of the case T1 computed as Ma =
√
u2 + v2/

√
γRT . We observe the438
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Figure 3: (a) Pseudocolor plot of temperature field and velocity vectors field of the case T1 [15]. (b) Horizontal
dimensionless temperature profile T (x, y=L/2)/T0 comparison between T1 (circle symbols) and T2 (solid line) cases.
Vierendeels et al. [61] case T2 simulation (circle symbols), Kuan and Szmelter [62] case T2 simulation (rectangle
symbols). Simulation results of case T2 [61, 62] are also plotted in Fig. 3b. CFL=400, mesh size 10242, tf =20 s.

Mesh Nusselt (left) order Nusselt (right) order Mean relative pessure in Pa order
64x64 9.0067 n/a 9.0350 n/a −1.1448×104 n/a
128x128 8.7767 n/a 8.7881 n/a −8.9730×103 n/a
256x256 8.7129 1.852 8.7155 1.765 −8.0069×103 1.357
512x512 8.6924 1.634 8.6930 1.689 −7.7715×103 2.037
1024x1024 8.6858 1.644 8.6860 1.682 −7.7269×103 2.401
Extrapolation 8.6827 n/a 8.6828 n/a −7.7164×103 n/a

Mesh Mean velocity in ms−1 order Mean temperature in K order
64x64 5.6898×10−2 n/a 5.9958×102 n/a
128x128 5.6037×10−2 n/a 6.0538×102 n/a
256x256 5.5683×10−2 1.285 6.0746×102 1.478
512x512 5.5585×10−2 1.848 6.0808×102 1.740
1024x1024 5.5562×10−2 2.059 6.0825×102 1.847
Extrapolation 5.5554×10−2 n/a 6.0832×102 n/a

Table 9: Spatial order accuracy of the compressible natural convection case T2 [15]. CFL=400, tf =20 s.
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maximal Mach number values in the both sidewall boundary layers of Mamax = 4.5×10−4. We do439

not find back the Ma0 assumed by the characteristic velocity coming from the current dimensional440

analysis [60]. The current range of local Mach is one order of magnitude below the expected value, i.e.441

Ma0 =1.78×10−3. The characteristic velocity overestimates the true characteristic velocity, whether442

it is calculated [63, 60, 64]. This remark is valid also for the others natural convection benchmarks443

proposed below (Section 6.3.3 and Section 6.2). In addition to the local Mach number, we report the444

maximum and minimum values of the velocity divergence at steady state, (∇ · v)max=12.97 s−1 (left445

bottom of the cavity) and (∇ ·v)min=−9.571 s−1 (top right of the cavity). Without giving additional446

plotting, extreme values give another measure of the compressibility of the flow in addition to local447

Mach number.448

6.2. Immersed boundary compressible steady natural convection benchmark449

Natural convection in a cavity induced by an immersed heating body is considered in this section.450

The steady test case from Bouafia and Daube [63] is considered with the following dimensionless451

parameters Ra0=5×106, Re0=2.65×103, Ma0=1.53×10−3, Pr0=7.1×10−1, ε=0.2 with the reference452

velocity computed as V0 = µ0

ρ0L

√
Ra0 [63]. We refer the reader to the original paper [63] for the453

geometrical configuration. The fluid filling the square cavity is air with variable Sutherland law for454

viscosity and conductivity (see Appendix C for parameters values). We propose for our simulations an455

acoustic CFL=400 and a final time tf =30 s which verifies the steady state residuals of our simulations.456

A spatial first-order volume-penalty method is used [65] (see Section 3.3).457

For temperature, the top and bottom walls are adiabatic conditions, left and right boundaries are458

cooled and the immersed boundary is heated (Thot=360 K and Tcold=240 K). For velocity boundary459

conditions, no slip conditions are considered.460

Figure 5a,b presents respectively horizontal profiles of dimensionless velocity and temperature and461

the pseudocolor plot of temperature field and velocity vectors field at the steady state. The charac-462

teristic flow described by Bouafia and Daube [63], under a low Mach numerical method, is exactly463

found back by our simulations with the two counter-rotating recirculation zones cut off by a central464

plume induced by the heated immersed boundary (see Figure 5b). More importantly, the flow sym-465

metry along the central vertical axis at this Rayleigh number is observed in Fig 5a,b and in Fig 4c.466

A discrepancy is visible for both velocity and temperature horizontal profiles (Figure 5a) between the467

literature data [63] and our simulation on the mesh 10242. We report our 10242 mesh as spatially468

converged and we note that Bouafia’s data are very close to those produced by our 5122 mesh (data469

not shown).470

We present the local Mach number at steady state in Fig. 4b. The maximum Mach number471

(Mamax = 5.3×10−4) are located in the area of the central vertical thermal plume. As remarked472

in Section 6.1, the range of local Mach is one order of magnitude below the expected value, i.e.473

Ma0=1.53×10−3. In addition to the local Mach number and to give another measure of the compress-474

ibility of the flow, we report the maximum and minimum values of the velocity divergence at steady475

state, (∇ · v)max = 17.23 s−1 and (∇ · v)min =−15.03 s−1, located at the two upper corners of the476

heated immersed boundary.477

As expected due to the immersed boundary method used, first convergence order is observed478

(Table 10) on averaged Nusselt numbers, spatial averaged relative pressure, velocity, and temperature.479

Richardson extrapolated values are also provided in the table. To the author’s knowledge, Nusselt480

numbers of this benchmark have never been reported, both on the side walls (Table 10), but also on the481

hot Immersed Boundary (IB), i.e. NuIBtop =1.1681×101, NuIBbottom =3.0025×101, NuIBleft =3.1641×101,482

NuIBright =3.1641×101 on the finest grid. For all Nusselt computations, we consider the length of the483

cavity as the characteristic length. The high Nusselt numbers of left, right, and bottom IB express484

the very thin thermal boundary layer observed compared to the top IB thermal boundary layer (see485

Fig 5b). Absolute difference between left and right Nusselt number for the entire cavity and for the486

immersed boundary are respectively 1.41×10−4 and 1.2×10−11.487

6.3. Unsteady test cases488

6.3.1. Thermoacoustic wave propagation in a perfect gas489

The generation and propagation of thermoacoustic wave is the subject of the present test case490

introduced by Huang and Bau [66] and later studied by Farouk et al. [67]. A nitrogen-filled one-491

dimensional cavity of length L=1mm is at the initial state (T0, p0, ρ0)=(300K, 101325Pa, p0

RT0
), where492
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Figure 4: Local Mach number variations. (a) Steady compressible case T1 benchmark [15]. Mesh size 10242, CFL=400,
tf = 20 s. (a) Steady immersed boundary compressible benchmark [63]. Mesh size 10242, CFL = 400, tf = 30 s.
(c) Time averaged Mach of the unsteady compressible benchmark [64]. CFL = 2.5×103, Chebyshev mesh size 2562,
tf =5.0051×103 s.
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Mesh Nusselt (left) order Nusselt (right) order Mean relative pressure in Pa order
64x64 6.1467 n/a 6.1467 n/a −1.3617×104 n/a
128x128 6.4145 n/a 6.4145 n/a −1.0793×104 n/a
256x256 6.5442 1.046 6.5442 1.046 −9.9263×103 1.705
512x512 6.6137 0.902 6.6137 0.902 −9.5457×103 1.187
1024x1024 6.6502 0.926 6.6502 0.926 −9.3550×103 0.997
Extrapolation 6.6908 n/a 6.6908 n/a −9.1636×103 n/a

Mesh Mean velocity in ms−1 order Mean temperature in K order
64x64 3.7091×10−2 n/a 2.6967×102 n/a
128x128 3.7338×10−2 n/a 2.7219×102 n/a
256x256 3.7498×10−2 0.627 2.7321×102 1.292
512x512 3.7572×10−2 1.122 2.7366×102 1.197
1024x1024 3.7606×10−2 1.104 2.7387×102 1.088
Extrapolation 3.7636×10−2 n/a 2.7406×102 n/a

Table 10: Spatial order accuracy of the immersed boundary compressible natural convection [63]. CFL=400, tf =30 s.

the gas is considered to be a perfect gas. The viscosity and conductivity of the fluid are temperature493

dependent (see Appendix C for parameters values). The validation of this test case is carried out by494

the comparison of our pressure wave profile at time t = 0.25t0 = 7.08×10−7 s against reported data495

from simulations of the original paper [66] and from Farouk et al. [67]. The dimensionless parameters496

are respectively Ma0=6.0×10−2 (computed from velocity max peak at t=0.25t0 and the initial speed497

of sound c0=
√
γRT0) and Pr0=0.75.498

For velocity boundary conditions, left and right boundaries have no-slip conditions while top and499

bottom boundaries have slip conditions. For temperature boundary conditions, top and bottom have500

homogeneous Neumann conditions, right and left have respectively Dirichlet condition with TR = T0501

and TL(t > 0)=2T0.502

Figure 6 presents the thermoacoustic wave shape within the cavity at t= 0.25t0 by plotting the503

dimensionless relative pressure along space for our simulation and literature data. This flow is char-504

acterized by the propagation of a pressure wave with a sharp front and an increasing peak width over505

time [66, 67]. Because of the strong heating on the left of the cavity and the ideal gas hypothesis,506

the wave speed is variable and its correct prediction is mandatory. An inconsistency between the two507

references about the wavefront and the speed of the wave can be seen in Fig. 6. The proposed solution508

(mesh size 32768×8 and CFL=0.1), resulting from a spatial and temporal comparative study, can509

be seen as a reference solution. It is possible to validate the propagation speed of the Huang and510

Bau [66] wave by comparison with our data. Note that for the two previous solutions [66, 67], the511

numerical diffusion explains the attenuated wave observed. The present benchmark permits to validate512

our method to simulate thermoacoustic wave propagation. In the next test case, we investigate the513

same phenomenon very close to the liquid-vapor critical point with a very low amplitude and sharp514

thermoacoustic wave propagation.515

6.3.2. Thermoacoustic wave propagation close to the liquid-vapor critical point516

Miura et al. [68] firstly study experimentally supercritical carbon dioxide acoustic wave propagation517

using a very sensitive interferometer to capture the piston effect within a cavity of length L=1.08 cm.518

The reproduction of Miura et al. [68] experimental data has been the cornerstone for validation of a519

CFD code with applications in supercritical fluid dynamics [44, 69, 70]. On the critical isochore and520

very close to the critical point (Tc=304.13 K, ρc=467.6 kgm−3, pc=73.77 bar), the authors reported521

the normalized variation of density (ρ−ρ0)
ρ0

×107 along a period of time tf =0.4 ms when the left cavity522

is heated by a constant heat flux ΦL during 0.2 ms. After this period, adiabatic condition is imposed523

to the left wall. The reproduction of Miura et al. [68] experimental data has been the cornerstone for524

validation of a CFD code with applications in supercritical fluid dynamics [44, 69, 70].525

A simulation employing identical initial and boundary conditions as those observed in the exper-526

imental setup has been conducted within a one-dimensional domain. For the temperature boundary,527

we impose on the left wall a constant heat flux ΦL=1.83 kWm−2 during the first 0.2 ms and adiabatic528

condition to the right wall and left wall after t > 0.2 ms. For the velocity boundary, we impose slip529
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Figure 6: Comparison of dimensionless relative pressure wave at t = 0.25t0 = 7.08×10−7 s. IPCMSF with BDF2
temporal scheme (solid line), IPCMSF with Euler backward temporal scheme (dashed line with symbol), simulation
from Huang and Bau [66] (empty circle symbols), simulation from Farouk et al. [67] (empty triangle symbols). Mesh
size 32768×8 and CFL=0.1.

condition to all boundaries. The NIST refprop library has been used as EoS to compute the density530

and all the thermophysical properties of the fluid.531

According to the experiment and the simulations (see Fig. 7, 8), the wave propagates continuously532

between the left and right walls. This leads to an increase in bulk temperature and, consequently, an533

increase in density. The present test case is highly challenging given the very low variations in density534

(approximately 1×10−7) and the sharp shape of the travelling wave.535

Figure 7 presents the normalized density variation at the cell centre as a function of time of the536

T0−Tc=150 mK experiment of Miura et al. [68]. The results with first-order Euler backward are found537

to be in excellent agreement with experimental results, as well as other numerical solutions, validating538

the proposed method for flows very close to the critical point. Let us note that we simulated this test539

case with BDF2 temporal scheme but because of the dispersivity of the scheme (see Fig. 1b) and the540

sharp shape of the wave, the travelling is reconstructed at CFL=1 with oscillations of the solution.541

In addition of density variations and for the sake of reproducibility, Figure 8 shows the normalized542

variations of temperature and pressure at the centre of the cell. As we compute density solely from543

the NIST refprop database and given our excellent result on the density wave propagation, it means544

excellent pressure and temperature resolutions.545

6.3.3. Compressible unsteady natural convection benchmark546

The last challenging benchmark testing our method is a recently proposed unsteady differentially547

heated square cavity with large temperature variations problem [64]. A two-dimensional cavity is filled548

with a perfect gas fluid with variable viscosity and conductivity following Sutherland law (see Appendix549

C for parameters values). The dimensionless parameters of the reproduced benchmark are Ra0 =550

1.83×108, Re0=1.61×104, Ma0=1×10−1 (considering the reference velocity u0=
√
2εLg [64]), Pr0=551

7.1×10−1, ε = 0.6. One can observe significantly larger Mach number compared to the Le Quéré552

et al. [15] benchmark (see Section 6.1), providing an interesting complementary validation test case553

for subsonic compressible methods.554

Boundary conditions are nearly identical as in Section 6.1. We introduce time-dependent hot and555
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cold temperature boundary conditions556

TL(t) =
T0 + T∞

L

2
+

T0 − T∞
L

2
tanh(f0(t− t0) , (30)

TR(t) =
T0 + T∞

R

2
+

T0 − T∞
R

2
tanh(f0(t− t0) , (31)

with f0 = 2/t0 s−1 and t0 = 60 s. TL,R(t) tend to T∞
L = 960 K and T∞

R = 240 K, respectively. The557

proposed time-dependent Dirichlet conditions TL(t) and TR(t) allow avoiding the stiff initialization558

during the first iterations of BDF2 simulations. The reported BDF2 stiffness of the constant left/right559

temperature boundary conditions leads to the divergence of the simulation appearing at the very first560

iterations. This diverging feature has not been observed with Euler backward temporal scheme due561

to the diffusion of the scheme. We do not report any difference that is induced by the temperature562

ramps on the periodically established flow solution.563

Unlike the Le Quéré et al. [15] cases in Section 6.1, comparative results on regular and Chebychev564

mesh grids point out the necessity of Chebyshev grid refinement to well capture the very thin boundary565

layer of the test case (see Figure 9a,b). We present in the following results on a 2562 Chebyshev refined566

mesh with an adaptative time step driven by an acoustic CFL=2.5×103.567

For an ease of reproducibility, we report our statistic start time ts/teddy = 40 and the end time568

tf/teddy = 100 of the simulation, with teddy = 4L/(3u0) [64]. As performed by Wen et al. [64], we569

obtained a periodically established flow at this final time with relevant statistics of the resolved fields.570

Figure 9a show the pseudocolor plot of the time averaged temperature and the velocity vector field571

at final time. In addition of the global overview of this natural convection benchmark and in order to572

provide reproducible data, we propose in Fig 9b three horizontal time averaged temperature profiles573

at final time along the vertical axis at y=0.05L, y=0.5L, y=0.85L, respectively.574

Figure 9c,d show the time evolution of the instantaneous dimensionless velocity and temperature575

along the last five cycle. The localisation of the probes are for the temperature and velocity at576

(x= 0.85L, y= 0.05L) and (x= 0.95L, y= 0.05L), respectively. As found by Wen et al. [64], we find577

back two periodic signals of period T = 1.85teddy. Although we use a different numerical method,578

we observe an instantaneous temperature periodic temporal curve in good agreement with existing579

result [64]. Regarding the temporal evolution of instantaneous x-velocity (see Fig 9c), our temporal580

evolution during the period is relatively different from that reported although overall we find similar581

behavior. A possible reason is that we do not compare the temporal evolution of velocity at the same582

position in the cavity. In order to remove possible ambiguity on the location of the probes, we have583

marked them in Fig 9a.584

We present the local time averaged Mach number at tf =5.0051×103 s in Fig. 4c. The maximum585

Mach number (Mamax = 3×10−2) are located in the both very thin sidewall boundary layers as in586

Section 6.1. The range of local time averaged Mach is one order of magnitude below the expected587

value, i.e. Ma0=0.1. Wen et al. [64] also document this discrepancy in the Mach order of magnitude588

on the Ra=5×109 case by plotting contour plot of local Mach number. In addition to the local Mach589

number, we report the maximum and minimum values of the instantaneous velocity divergence at final590

time, (∇ · v)max =0.6146 s−1 (left bottom of the cavity) and (∇ · v)min =−0.2980 s−1 (right top of591

the cavity).592

From data given by Wen et al. [64], the validation of this test case is achieved by the comparison593

of (a) the dimensionless temperature and velocity fluctuations spectrums, (b) the left and right time-594

averaged Nusselt number.595

We present in Figure 9e,f the Power Density Spectrum (PDS) of the dimensionless velocity and596

temperature fluctuations fields. The reported PDS [64] of a field x is computed as PDSx = |x̂|2597

with x̂ the Fast Fourier Transform (FFT) of x. We thus compute the dimensionless PDS of the time-598

varying x-velocity fluctuation as PDSu(f)= |û′|2/u0, and temperature fluctuation PDST (f)= |T̂ ′|2/T0.599

For both x-velocity and temperature fluctuations, we found the first five dimensionless frequencies600

f · teddy = (5.4×10−1, 1.0, 1.6, 2.2)T . Computed frequencies are consistent with reported values [64],601

e.g. the first frequency is in both studies f1teddy'0.5.602

The left and right time-averaged Nusselts numbers computed on the last five cycles are respectively603

Nuleft = 34.73, Nuright = 34.66. The absolute difference between left and right Nusselt is 7.44×10−2.604

Our Nusselt numbers are consistent with the left reported value [64] of Nuleft=34.2718.605
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Figure 9: (a) Pseudocolor plot of time-averaged temperature field T (x, y) and velocity vectors field at tf =5.0051×103 s.
(b) Horizontal time-averaged dimensionless temperature profiles at differents vertical positions and at tf =5.0051×103 s.
(c) Time evolution of the instantaneous dimensionless x-velocity u(x=0.95L, y=0.05L, t)/u0 during the last five periods.
(d) Time evolution of the instantaneous dimensionless temperature T (x = 0.85L, y = 0.05L, t)/T0 during the last five
periods. (e) Power density spectrum of the dimensionless x-velocity flucturation FFT. (f) Power density spectrum of the
dimensionless temperature flucturation FFT. CFL=2.5×103, Chebyshev mesh size 2562, tf =100teddy=5.0051×103 s.
The probes localisations for (c,e,d,f) plots are drawn on (a).
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7. Conclusions and perspectives606

In this article, we propose an original pressure-based method for compressible flows based on the607

temporal pressure increment. This can be sought as a generalization of the incremental pressure608

correction method of incompressible flows to compressible flows. The method has been spatially and609

temporally second-ordered verified, with solutions to flows with Mach number up to 0.6. The method610

is validated with both steady and unsteady compressible flows, featuring very large temperature ratio611

across the domain, thermoacoustic wave propagations in perfect gas as well as very close to the critical612

point where extremely low-density variations are encountered. The implicit resolution of pressure613

increment contributes to the increased numerical stability through the utilization of a very large CFL614

number whenever the nature of the test case allows for such a large time step, particularly in steady615

test cases. This results in significant computational time savings. Finally, when fluid properties satisfy616

the incompressible assumption, the method tends to the incompressible incremental pressure correction617

method.618

The results obtained from the current work thus makes it feasible to advance this approach to more619

complex scenarios and physical problems such as flows with open and traction boundary conditions [71,620

72], multiphase flows under the one-fluid compressible Navier-Stokes equations where both the phases621

could exhibit varying different compressibility and be governed by different equation of state, and622

reactive flows both in open and closed systems.623
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Appendix A. Derivation of pressure-energy equation630

This section presents the development of the energy conservation expressed in terms of pressure631

variable p. Starting from equation (7), whether we consider the conservation of energy in cp formula-632

tion (1c) or in cv formulation,633

ρcv

(
∂T

∂t
+ v ·∇T

)
= −Tβp

χT
∇ · v +∇ · (λ∇T ) + Φd(v) , (A.1)

we obtain a unique equation of the conservation of energy expressed in pressure variable. In both634

cases, after introducing (A.1) or (1c) into equation (7) and grouping terms, we get635

• in the cv (A.1) formulation636

dp

dt
= −

(
1

χT
+

Tβ2
p

ρcvχ2
T

)
∇ · v +

βp

ρcvχT
(∇ · (λ∇T ) + Φd(v)) , (A.2)

• in the cp (1c) formulation637 (
1−

Tβ2
p

ρcpχT

)
dp

dt
= − 1

χT
∇ · v +

βp

ρcpχT
(∇ · (λ∇T ) + Φd(v)) . (A.3)

It can be demonstrated that equations (A.2) and (A.3) are identical using several thermodynamic638

relations, i.e. Mayer relation Tβ2
p

/
(ρcvχT )=γ − 1, ratios of specific heats γ=cp/cv, definition of the639

speed of sound c2=1/(χsρ), permit to write640

1

χT
=

ρc2

γ
,

Tβ2
p

ρcvχT
= γ − 1 and

βp

ρcvχT
=

βpc
2

cp
. (A.4)

Using relations (A.4) in both equations (A.2) and (A.3), we obtain the equation which express the641

conservation of energy in terms of pressure variable (8). Note that the introduced equations do not642

involve any hypothesis about the considered fluid.643
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Appendix B. Method of Manufactured Solutions644

As discussed earlier in Section 5.3, source terms appear from the method of manufactured solution645

and they are added in the right hand side of all resolved equations. In the case of an anisothermal646

flow without viscous dissipation rate of energy and not subject to gravity, it is necessary to add three647

source terms for the resolved momentum, energy and pressure equations as648

Ṡv = ρ
Dv

Dt
+∇p−∇ · (µγ̇) + 2

3
∇ (µ∇ · v) , (B.1a)

Ṡe = ρcp
DT

Dt
− Tβp

(
∂p

∂t
+ v ·∇p

)
−∇ · (λ∇T ) , (B.1b)

Ṡp =
Dp

Dt
+ ρc2∇ · v −

(
βpc

2

cp

)(
∇ · (λ∇T ) + Ṡe

)
. (B.1c)

As we do not solve energy considering isothermal flow, we only compute two source terms for momen-649

tum and pressure equations. The isothermal pressure source term reads650

Ṡp =
Dp

Dt
+ ρc2∇ · v . (B.2)

As we consider a perfect gas in Section 5.3, the time- and -space-dependent thermodynamic properties651

of the fluid are computed as ρ=p/RT , χT =1/p, βp=1/T and c2=γp/ρ.652

For the sake of reproducibility, the source terms of the isothermal manufactured solution (see653

Section 5.3.1) is given below. They are the result of the differentiation of equations (B.1a) and (B.2)654

The momentum and pressure source terms read respectively655

Ṡvx
=4π2µu0 cos(2πft)

{
sin2(πx) sin(2πy)− sin(2πy) cos2(πx) (B.3)
+sin2(πx) sin(2πy)− sin(πy) cos(2πx) cos(πy)

}
+

2µ

3
u0 cos(2πft)

{
2π2 sin(2πy) cos2(πx)− 2π2 sin2(πx) sin(2πy)

+4π2 sin(πy) cos(2πx) cos(πy)
}

+ p1π cos(2πft) cos(πx) sin(πy)

+ 2πu0
p(x, y, t)

T0R

{
−f sin2(πx) sin(2πy) sin(2πft)

+ u0 sin
3(πx) sin2(2πy) cos(πx) cos2(2πft)

+u0 sin
2(πx) sin(2πx) sin2(πy) cos(2πy) cos2(2πft)

}
Ṡvy

=4π2µu0 cos(2πft)
{
sin(2πx) sin2(πy)− sin(2πx) cos2(πy) (B.4)
− sin(πx) cos(πx) cos(2πy) + sin(2πx) sin2(πy)

}
+

2µ

3
u0 cos(2πft)

{
2π2 sin(2πx) cos2(πy)− 2π2 sin(2πx) sin2(πy)

+4π2 sin(πx) cos(πx) cos(2πy)
}

+ p1π cos(2πft) cos(πy) sin(πx)

+ 2πu0
p(x, y, t)

T0R

{
−f sin(2πx) sin2(πy) sin(2πft)

+ u0 sin
3(πy) sin2(2πx) cos(πy) cos2(2πft)

+u0 sin
2(πx) sin2(πy) sin(2πy) cos(2πx) cos2(2πft)

}
,

656

Ṡp =πp1u0 cos
2(2πft)

{
sin2(πx) sin(πy) sin(2πy) cos(πx) + sin(πx) sin(2πx) sin2(πy) cos(πy)

}
(B.5)

+ γ2πu0p(x, y, t) cos (2πft) {sin(πx) sin(2πy) cos(πx) + sin(2πx) sin(πy) cos(πy)}
− 2πfp1 sin(πx) sin(πy) sin(2πft) .

Sources terms have been computed using the symbolic computing python module sympy. Due to657

the long analytical expressions of the source terms for the anisothermal manufactured solution (see658

Section 5.3.2), we do not include them in the appendix. We refer the reader to the initialization file of659

each test case available in the notus repository [46].660
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Test-case T ∗ in K µ∗ in Pa s λ∗ in Wm−1 K−1

Le Quéré et al. [15] case T2 273 1.68×10−5 2.38×10−2

Bouafia and Daube [63] 300 1.68×10−5 2.38×10−2

Wen et al. [64] 273 2.96×102 2.30×10−1

Table C.11: Values of the parameters of the Sutherland law for the proposed test cases. All test cases have the same
S=110.5.

Appendix C. Parameter values of material laws661

For the sake of easily reproducible verification and validation process, we present in Table C.11 the662

values of the Sutherland law parameters used in our test cases. We recall the Sutherland law for a663

material properties x664

x(T ) = x∗
( T

T ∗

)3/2T ∗ + S

T + S
, (C.1)

with x∗, T ∗ and S the three parameters of the law.665

The viscosity and conductivity law of the thermoacoustic wave propagation of Huang and Bau [66]666

has been set by a quartic temperature law polynomial. Material properties x is thus computed as667

x(T ) =

3∑
i=0

axiT
i , (C.2)

with axi the ith constant parameter in [x]K−i with [x] the unit of x. We set for viscosity and conduc-668

tivity respectively669

(aµ0, aµ1, aµ2, aµ3) = (1.24×10−6, 6.32×10−8,−4.65×10−11, 2.01×10−14) , (C.3)
(aλ0, aλ1, aλ2, aλ3) = (−7.26×10−4, 9.76×10−5,−7.18×10−8, 3.10×10−11) . (C.4)
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