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Abstract

This study presents a numerical approach for modelling diffusion-driven mass transfer in incom-

pressible two-phase systems. We implemented the Compressive Continuous Species Transfer

single-field formulation, utilising a Volume-of-Fluid approach with the CICSAM compressive

scheme. While existing single-field methodologies successfully model dissolution phenomena,

our investigation reveals that state-of-the-art discretisation approaches are inadequate for

accurately modelling precipitation. Consequently, we introduced a shifted discretisation method-

ology, inspired by two-field formulation, for source terms involving mass transfer rate. This

shifted method enables simulation of both dissolution and precipitation phenomena within the

single-field framework. The approach is validated against analytical solutions across various

dimensional scenarios, including novel theoretical solutions for 1D and 2D precipitation cases

derived from existing 3D theoretical solutions. Finally, we demonstrate the method effectiveness

by examining gas bubble mass transfer in creeping flow, comparing results with semi-analytical

solutions and identifying limitations under high Péclet number conditions.
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Code availability: The implementation of the proposed method is made with Notus which

significantly enhances the reproducibility of the present work. The original code is available in

the Git repository https://git.notus-cfd.org/ (code v0.6.0).
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1 Introduction

Mass transport and its transfer at interfaces in multiphase systems is a key aspect of

numerous natural phenomena and industrial processes, ranging from geochemical reactions

to chemical engineering applications, such as bubble column reactors, waste-water treatment

facilities, chemical reactors and many others. These complex processes include viscous and

capillary effects, chemical reactions and the coupling between mass transfer and fluid dynamics.

This study focuses on modelling diffusion-driven mass transfer in an incompressible two-phase

system consisting of a pure gas phase and a multicomponent liquid phase. Specifically, we

examine systems where the gas species is diluted into the liquid phase referred to as the solution.

Depending on whether the solution is undersaturated or supersaturated, the gas phase volume

decreases or increases, generating dissolution or precipitation phenomena, respectively. As solute

transport limits the kinetics, the interface is at thermodynamic equilibrium and is characterized

by a concentration jump. Experimental measurements are generally expensive and limited by

the available measuring techniques, which usually provide global quantities and do not give

information about local details, such as local mass transfer rates. Numerical simulation is

therefore a powerful tool to investigate these processes.

Studies in the literature initially addressed the numerical modelling of mass transfer without

accounting for phase volume change through various methodologies. These approaches are

based on conventional multiphase flow techniques such as: (i) the Level Set (LS) method

(Sussman et al. (1994)), employed in subsequent studies (Yang and Mao (2005); Deshpande

and Zimmerman (2006); Wang et al. (2008); Hayashi et al. (2014); Balcázar-Arciniega et al.

(2019); Yu and Leung (2025)); (ii) the Front Tracking (FT) approach (Tryggvason et al. (2001)),

used in (Khinast et al. (2003); Radl et al. (2008); Aboulhasanzadeh et al. (2012)); and (iii)

the Volume-of-Fluid (VOF) approach (Hirt and Nichols (1981); Scardovelli and Zaleski (1999)),

implemented in (Haroun et al. (2010); Marschall et al. (2012); Deising et al. (2016); Maes and

Soulaine (2018); Farsoiya et al. (2021); Tourbier et al. (2024)). Additional methodologies include

Arbitrary Lagrangian-Eulerian (ALE) methods (Bäumler (2014); Lehrenfeld (2015); Weber et al.

(2017)) and hybrid VOF-LS methods (Taqieddin et al. (2020); Schulz et al. (2022)), amongst

other significant contributions to the field.

In comparison, few studies in the literature have addressed the numerical modelling of
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mass transfer while accounting for phase volume change. The complexity arises from two

major challenges: first to account for phase volume variations induced by mass transfer while

maintaining the concentration discontinuity at interfaces, and second, to deal with the mass

volume changes that occur when species transfer between liquid and gas phases. In diffusion-

driven mass transfer problems, the analysis of phase volume change induced by the mass

transferred between two phases has been performed using the VOF methods through two

approaches: the single-field (or one-fluid) approach (Maes and Soulaine (2020); Vachaparambil

and Einarsrud (2020); Zanutto et al. (2022b); Zanutto et al. (2022a)) and the two-field (or

two-fluid) approach (Fleckenstein and Bothe (2015); Gennari et al. (2022)). These two VOF

methods differ in their conceptualization. Rather than solving separate species transport

equations in each phase and then closing the system through interface conditions, as employed in

two-field approaches, the single-field formulation utilises a unified methodology. This approach

incorporates the principles of species flux conservation, both in the bulk phases and at the

interface, into one comprehensive set of equations. This approach is referred to in the literature

as the Continuous Species Transfer (CST) model (Haroun et al. (2010); Deising et al. (2016))

and, more recently, the Compressive Continuous Species Transfer (C-CST) model (Maes and

Soulaine (2018); Maes and Soulaine (2020)).

In this work, the C-CST single-field formulation will be implemented in the Notus open-

source CFD software Notus (2024) using a VOF approach based on the Compressive Interface

Capturing Scheme for Arbitrary Meshes (CICSAM) of Ubbink and Issa (1999) for both volume

fraction and species transport equations. This scheme allows sharp interface representation by

effectively preventing interface smearing. The objective is to remove the use of an artificial

numerical compressive term typically used within the C-CST single-field framework (Zanutto

et al. (2022b)) with diffusive advection scheme such as Flux Corrected Transport (FCT) scheme

of Zalesak (1979).

Fleckenstein and Bothe (2015) proposed a one-fluid formulation of the Navier–Stokes equa-

tions along with the transport equation for the phase indicator function. This formulation, which

assumes incompressible and Newtonian fluids, serves as the foundation for both single-field

and two-field approaches. Fleckenstein’s study reported highly accurate dissolution results that

showed excellent agreement with both analytical predictions and experimental observations.
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Building upon this foundation, Maes and Soulaine (2020) replaced the two-field formulation

formulation of the species conservation equation by the equation derived by Haroun et al. (2010)

and Deising et al. (2016). This formulation assumes that all species are diluted within the

solvent. Maes also derived an expression for the mass transfer rate term that accounts for phase

volume variation within the single-field framework, representing the first demonstration of pure

gas dissolution into a liquid by using this formulation. More recently, Zanutto et al. (2022b)

enhanced this approach by eliminating the need for additional numerical treatments, employing

instead a compressive advection scheme for both the species conservation equation and the

transport of the phase indicator function. However, this development was exclusively applied

to dissolution cases. Therefore, among the studies addressing mass transfer phenomena with

phase volume change, it is noteworthy that every study examines dissolution processes, whereas

the precipitation problem remains largely unexplored in the literature. While the two-field

formulation has recently demonstrated accurate predictions of precipitation phenomena (Gennari

et al. (2022)), comparable results have not yet been achieved within the single-field framework.

However, we will show that state-of-the-art numerical modelling of single field C-CST method

fails to reproduce precipitation phenomena. To address this issue, we propose to use a two-field

numerical methodology developed by Gennari et al. (2022) for diffusion-driven problems and

build upon the work of Palmore and Desjardins (2019); Scapin et al. (2020); Malan et al.

(2021) (in temperature-driven problems). This original discretisation of mass transfer rate aims

to improve the computational capabilities of the single-field C-CST model to match those of

the two-field formulation in diffusion-driven mass transfer problems for both dissolution and

precipitation phenomena.

The implementation of the C-CST model will first be validated against the theoretical

solution of Crank (1979) for a 1D-dissolution case and the approximate solution of Epstein and

Plesset (1950) for a 3D-dissolution case. Additionally, it will be tested against the theoretical

solution of Scriven (1959) for a 3D-precipitation case. To address a crucial gap in the literature,

this paper aims to make a contribution by developing novel 1D and 2D theoretical solutions for

static precipitation phenomena, building upon the work of Scriven (1959). This comprehensive

approach enables our study to compare the C-CST discretisation methodology commonly used

in the literature with the discretisation methodology inspired from the two-field formulation,
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across a variety of static dissolution and precipitation scenarios.

This work is organised as follows. The governing equations are presented in Section 2. The

single-field formulation leading to the C-CST model is described in Section 3. The details of the

numerical implementation of the C-CST model and methodology for the discretisation of mass

transfer rates, inspired from two field formulation are given in Section 4. Subsequently, the

implementation of the model is validated by comparison with analytical solutions: in 1D and 3D

for dissolution phenomena in Section 5, and in 1D, 2D and 3D for precipitation phenomena in

Section 6, where the exact solutions for all dimensions are provided. Finally, the methodology

is applied to study mass transfer of gas bubbles in creeping flow. The results are compared with

a semi-analytical solution for dissolving bubbles in creeping flow, and a precipitation case is

presented to demonstrate the efficiency of the proposed method in dynamic scenarios in Section

7.

2 Governing equations

In this section, we describe the continuum mechanical modelling of momentum and mass

transfer in incompressible multi-phase flow with volume effects. For this purpose, we consider a

physical generic domain Ω composed of two separate phases, the liquid phase Ωl and the gas

phases Ωg as we are interested in gas/liquid mass transfer. These two phases are separated by

the interface Σ as shown in the Fig. 1, where nΣ represents the normal vector directed from the

liquid phase toward the gas phase. Note that the subscript l and g refer to the liquid and gas

phases, respectively.

Ωl

Ωg
nΣ

Σ

Figure 1 – Schematic representation of the considered physical domain Ω = Ωl ∪ Ωg.

In any multicomponent mass transfer system, each phase k consist of a mixture of n chemical

components. In this system, every component i is characterized locally by its partial density
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ρi,k = ρi,k(x, t), where i ∈ J1, . . . , nK. This partial density is a function that varies with both

spatial coordinates x and time t. Under conditions where no chemical reaction occurs, the mass

conservation principle for each component is described by:

∂ρi,k
∂t

+∇ · (ρi,kui,k) = 0 in Ωk\Σ, k = g, l, (1)

where ui,k represents the velocity of component i in phase k. By definition, the total density of

phase k is defined as the sum of individual component partial densities: ρk =
∑

i ρi,k. Similarly,

the barycentric velocity of phase k is expressed as ρkuk =
∑

i ρi,kui,k. By applying these

definitions and summing (Eq. 1) over all n component, we obtain the mass conservation equation

for phase k given by:

∂ρk
∂t

+∇ · (ukρk) = 0 in Ωk\Σ, k = g, l. (2)

Assuming incompressible phases with constant properties, we can derive the simplified form

(Eq. 3) of the mass conservation equation

∇ · uk = 0 in Ωk\Σ, k = g, l. (3)

Additionally, the momentum conservation equation for the bulk of each phase k (valid for

incompressible and Newtonian fluids), is expressed as:

∂ρuk

∂t
+∇ · (ρkuk ⊗ uk) = −∇pk +∇ · (2µkSk) + ρkg in Ωk\Σ, k = g, l, (4)

where g denotes the gravitational body force applied to the system, and Sk = 1
2

(
∇uk +∇Tuk

)
represents the strain-rate tensor. The terms pk and µk correspond to the pressure and dynamic

viscosity of phase k, respectively.

By rearranging the mass conservation equation (Eq. 1), the species conservation equations

(Eq. 5) are obtained. These advection-diffusion equations are expressed as

∂ρi,k
∂t

+∇ · (Fi,k) +∇ · (Ji,k) = 0 in Ωk/Σ, k = g, l, (5)
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where Fi,k = ρi,kuk denotes the advective mass flux and Ji,k represents the mass diffusion flux

of species i in phase k, which is expressed through Fick’s law Taylor and Krishna (1993) as

Ji,k = −Di,k∇ρi,k, where Di,k denotes the diffusion coefficient of species i in phase k. The

diffusive flux of component n can be obtained with

Jn,k = −
∑

1≤i<n

Ji,k, (6)

resulting in n− 1 equations to solve.

To establish a complete system of equations, the continuity of conservative quantities are

required at the interface Σ for each equation. To describe the discontinuity of quantities across

the interface Σ, we introduce the jump notation for any quantity Γ, denoted by JΓK, which is

defined as

JΓK(x) = lim
h→0+

(Γ(x+ hnΣ)− Γ(x− hnΣ)) . (7)

Using this notation, the mass conservation principle at the interface (closing (Eq. 3)) is given

by:

Jρk (uk − uΣ)K · nΣ = 0 on Σ, (8)

where uΣ denotes the interface velocity. Finally, the term inside the bracket

ṁk := ρk (uk − uΣ) · nΣ on Σ,

represents the mass flux of phase k at the interface Σ.

The momentum conservation principle at the interface (closing Eq. 4) is expressed as:

JpkI − 2µkSkK · nΣ = σκnΣ on Σ, (9)

where I denotes the unit tensor, σ the interfacial tension coefficient, and κ the interface mean

curvature.

The mass flux conservation principle at the interface (closing (Eq. 5)) is expressed as:
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J(ρi,k (uk − uΣ)−Di,k∇ρi,k) · nΣK = 0 on Σ, (10)

where the term inside the brackets

ṁi,k := (ρi,k (uk − uΣ)−Di,k∇ρi,k) · nΣ on Σ,

represents the mass flux of component i in phase k.

Finally, thermodynamic equilibrium imposes the equality of chemical potentials at the

interface through Henry’s law Henry and Banks (1803), which relates the species concentration

on either side of the interface as

ρi,l = Hiρi,g on Σ, (11)

where Hi is the Henry’s coefficient for species i.

3 Single-field C-CST model

In this study, the single-field formulation is used. More detailed information can be found in

Slattery (1999). This VOF method expresses the conservation equations for mass, momentum,

and species—initially defined separately for each phase—into a unified system of equations valid

across the entire numerical domain Ω. This formulation, based on the Conditional Volume

Averaging (CVA) techniques, applies the volume averaging operator to a generic variable Γ in a

control volume V as

Γ =
1

|V |

∫
V

ΓdV . (12)

In this context, the variables are expressed using global (or mixture) variables defined as:

Γ = αgΓ
g
+ αlΓ

l, (13)

where αg and αl are the phase indicator function of the gas and liquid phase respectively. The

mean phasic notation Γ
k appears and defined as
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Γ
k
=

1

|Vk|

∫
Vk

ΓdV . (14)

Global variables, defined across the entire domain independently of the phase occupying the

cells (gas, liquid, or mixture), include phase properties such as density ρ, dynamic viscosity µ,

pressure p and transported variables such as velocity u and partial species densities ρi.

The single-field system of equations is presented below. This system is the same as the one

used in the literature by Maes and Soulaine (2020) and Zanutto et al. (2022b). More details

can be found in these papers, as well as in Fleckenstein and Bothe (2015) for the derivation of

the Navier-Stokes equation. Only the final conservation laws are presented.

3.1 Species conservation equations: C-CST model

The single-field species conservation equation called C-CST (Compressive Continuous Species

Transfer), derived by Maes and Soulaine (2018) from (Eq. 5) and (Eq. 10), is expressed as

∂ρi
∂t

+∇ · (ρiu) +∇ ·
(

(1−Hi) ρi
αg +Hi (1− αg)

αgαlur

)
= ∇ ·

(
DSF

i ∇ρi + ϕi

)
, (15)

where u represents the velocity obtained from Navier-Stokes equations, ur = ug
g − ul

l denotes

the relative velocity, the additional diffusion term ϕi represents the CST (Continuous Species

Transfer) flux and DSF
i (Single-Field diffusion coefficient) denotes the equilibrium-based mean

diffusion coefficient derived by Maes and Soulaine (2020) and expressed as

DSF
i =

αgDi,g
g
+Hi (1− αg)Di,l

l

αg +Hi (1− αg)
. (16)

This expression for the equilibrium-based mean diffusion coefficient indicates that in cells

containing an interface, the diffusion coefficient is weighted by the Henry’s coefficient Hi. The

terms Di,g
g and Di,l

l represent the phase-averaged diffusion coefficients in the gas and liquid

phases, respectively. When these values are not space-dependent, they are equivalent to the

phase diffusion coefficients Di,g and Di,l. This notation is used in the following sections since

these diffusion coefficients are constant.

Finally, the additional diffusion term ϕi (Eq. 17), called CST flux was introduced by Haroun

et al. (2010). It accounts for the discontinuous variation of concentration at the interface and it
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is expressed as

ϕi = ρi
1−Hi

αg + (1− αg)Hi

DSF
i ∇αg. (17)

The C-CST model is a more accurate form of (Eq. 5) than the CST model used by Haroun

et al. (2010) and formally derived by Deising et al. (2016) where additional assumptions were

made. Indeed, the CST model simplifies the expression of the advective fluxes Fi as

Fi = αgρi,gug
g + αlρi,lul

l = ρiu+
(
ρi,g

g − ρi,l
l
)
αg (1− αg)ur ≈ ρiu. (18)

This simplification is justified because the relative velocity ur is negligible compared to the

velocity intensity obtained from the Navier-Stokes equations u as shown by Fleckenstein and

Bothe (2015), even for systems with high solubilities (such as CO2 in H2O).

However, within the single-field framework and the use of a diffusive advection scheme (Flux

Corrected Transport (FCT) method called Multidimensional Universal Limiter with Explicit

Solution (MULES) Weller (2008)), a compressive velocity ucomp is used to reduce diffusion of

the scheme specially in advection dominant flow (Maes and Soulaine (2020)). This compressive

velocity ucomp is expressed as (Rusche (2002)):

ucomp =

[
min

(
cα

|Ff |
Af

,max
f

(
Ff

Af

))]
nΣ, (19)

where cα is a compression constant whose value (generally between 0 and 4) depends on the

user settings. Ff represents the volumetric flux across the face f and Af is the surface of these

face. It replaces the relative velocity ur in equations (Eq. 15) and (Eq. 26).

Note that the magnitude of ucomp (Eq. 19) is known to be much higher than that of the

relative velocity. This distinction in the naming of the variable is made to clarify the role of the

term: ur is a physical velocity whereas ucomp is a "numerical" one in order to reduce diffusion of

the interface. Zanutto et al. (2022b) showed that the use of the CICSAM (Compressive Interface

Capturing Scheme for Arbitrary Meshes) scheme, developed by Ubbink and Issa (1999), with

its compressive properties and high resolution capabilities, eliminates the need of the terms

containing ucomp.
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3.2 Navier-Stokes and phase advection equation

The single-field formulation of the continuity equation, (Eq. 3) and (Eq. 8), leads to a

non-zero divergence at the interface, which represents the variation in mass volume between the

phases. This equation reads

∇ · u = −ṁ

(
1

ρg
− 1

ρl

)
, (20)

where ρg, ρl denote the densities of the gas and liquid phase respectively. The right-hand side of

this equation is obtained by using the mass flux conservation principle at the interface (Eq. 8)

and ṁ describes the rate of mass transferred between the two phases across their interface.

Since this work focuses on gas-liquid mass transfer, it is important to note that the total volume

interfacial mass transfer rate, ṁ, represents the cumulative contribution of each volume species

mass transfer rate ṁi that occurs at the interface Σ:

ṁ =
∑

1≤i≤n

ṁi, (21)

where the volume species mass transfer rate ṁi is defined as the sum over the phase of the

integral of the partial mass flux of component i crossing the interface Σ in a reference volume V.

Its expression is given by:

ṁi =
∑
k

αk
1

V

∫
Σ

ṁi,kdS. (22)

This interfacial mass transfer rate ṁ occurs only at the interface Σ between the liquid and gas

phases and accounts for the phases volume change when the thermodynamic equilibrium of the

overall system is not reached. It is expressed from (Eq. 21) and (Eq. 22) by Maes and Soulaine

(2020) as

ṁ =

∑
i

(
DSF

i ∇ρi − ϕi

)
1− αg

·∇αg. (23)

This expression for ṁ clearly demonstrates the coupling between the species conservation

equation and the Navier-Stokes equations.

Further, the single-field momentum equation of (Eq. 4) and (Eq. 9) can be written as
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∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (2µϵ) + ρg + fΣ. (24)

The surface tension force, denoted as fΣ, acts as a body force at the interface following the

continuum surface force modelled by Brackbill et al. (1992) as

fΣ = σκ∇αg, (25)

where σ denotes the surface tension coefficient and κ the mean curvature.

The phase indicator function advection equation is then given by:

∂αg

∂t
+∇ · (αgu) +∇ · (αgαlur) = −ṁ

ρg
. (26)

This equation is exact and requires no additional assumptions (Graveleau et al. (2017)). The

right-hand side term derives directly from the interfacial mass conservation principle (Eq. 8).

The left-hand side terms containing ur are non-zero only at the interface and can be neglected

as previously discussed in section 3.1. This equation is the same as the one derived by Badillo

(2012). Moreover, under the assumption of incompressible phases, they demonstrate that the

advective flux due to the relative velocity can be expressed as:

∇ · (αgαlur) = (1− 2αg)∇ · u (27)

This formulation allows the expression of this term in any dimension without the need to

interpolate the velocity across the interface.

Finally, the single-field C-CST model consists of four partial differential equations: (Eq. 15),

(Eq. 20), (Eq. 24) and (Eq. 26) representing species, mass and momentum conservation and

phase advection, respectively.

4 Numerical methods

The C-CST model described above has been implemented in Notus (Notus (2024)), our

in-house Fortran-based CFD code. This parallel computational framework solves the system

of equations formed by (Eq. 15), (Eq. 20), (Eq. 24) and (Eq. 26) using finite volume methods
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on a fixed Cartesian staggered grid. In this context (unless explicitly stated otherwise), scalar

variables are defined and computed at the cell centres of the mesh, while vector components

are defined and computed at the cell faces. An Euler implicit time discretisation is used with

a second-order centered scheme for the diffusion in the momentum and species conservation

equations, except for the term involving ϕi, whose discretisation will be described below. The

coupling between velocity and pressure fields in the incompressible Navier-Stokes equations

((Eq. 20) and (Eq. 24)) is solved using the incremental pressure correction method developed by

Goda (1979). The source term in the mass conservation equation (Eq. 20) is incorporated into

the incremental pressure correction step.

An algebraic VOF method is used to solve the phase indicator transport equation (Eq. 26).

Following Perrier et al. (2019) and Zanutto et al. (2022b), we implemented the implicit CICSAM

method, that uses a switching techniques between two formulations: the Hyper-C scheme

(Leonard (1991)) and the ULTIMATE-QUICKEST scheme (Ubbink and Issa (1999)), for the

compressive differencing scheme (CDS) and high-resolution scheme (HR) respectively. This

switching mechanism depends on both the interface orientation and its movement. More details

about its implementation can be found in Ubbink and Issa (1999). This scheme is used to advect

both the phase indicator transport and the species conservation equations, ensuring consistency

between these equations (Deising et al. (2016)). This choice eliminates the terms involving

ucomp, as the interface remains sharp.

Finally, the mean curvature κ, in the continuum surface force (Eq. 25), is determined using

the height function method (Popinet (2009)).

4.1 Numerical discretisation of the CST flux

One of the key challenges in this modelling approach lies in the discretisation of the C-CST

model (Eq. 15). The discretisation methodology used in this work follows the approaches

developed by Zanutto et al. (2022b) and Maes and Soulaine (2020). In the diffusion term, the

face value mean equilibrium-based diffusion coefficient DSF
i,f is evaluated as

DSF
i,f =

αg,fDi,g +Hi,f (1− αg,f )Di,l

αg,f +Hi,f (1− αg,f )
. (28)
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Here αg,f and Hi,f represent the volume fraction of the gas phase and Henry’s coefficient,

respectively, evaluated at the centre of the face f through a linear interpolation from cell values.

For the integration of the CST flux ∇ · ϕi, the term ϕi is reformulated as

ϕi = DSF
i βiρi∇αg, (29)

where βi is a scalar expressed as

βi =
1−Hi

αg +Hi (1− αg)
. (30)

The term βi requires particular attention, as highlighted by Zanutto et al. (2022b). As the

diffusion term is treated in an implicit way, βiρi are evaluated at the face centre using a linear

interpolation. More details can be found in Zanutto et al. (2022b).

4.2 Interfacial mass transfer rate discretisation

4.2.1 The literature unshifted method

The mass transfer rate ṁ occurs exclusively at the interface between the liquid and gas

phases. This term accounts for both phase density change in (Eq. 20) and phase volume

evolution in (Eq. 26). Maes and Soulaine (2020) established the mathematical formulation of ṁ

(Eq. 23) for implementation within the single-field framework. This expression takes into account

the additional diffusion flux ϕi resulting from the discontinuous variation of species partial

density across the interface. Regarding its discretisation, Zanutto et al. (2022b) highlighted its

importance. Following the work of Maes and Soulaine (2020), they reformulated the expression

of ṁ into two separate terms. Using the definition of the following vector ΦD

ΦD =

∑
i

(
DSF

i ∇ρi − ϕi

)
1− αg

, (31)

the expression of ṁ becomes:

ṁ = ΦD ·∇αg = ∇ · (ΦDαg)− αg∇ · (ΦD) . (32)

This reformulation allows the discretisation of ΦDαg to be performed using upwinding in the
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direction of ∇αg, which prevents negative values in the transport of the phase indicator function

(Eq. 26). Without such a discretisation, Zanutto et al. (2022b) showed that the simulations

would not produce usable results. For the second term, ∇ · (ΦD) is expressed as

∇ · (ΦD) = ∇ ·
(∑

i

(
DSF

i ∇ρi −DSF
i Ψi∇αg

)
1− αg

)
, (33)

with

Ψi = ρi
1−Hi

αg +Hi (1− αg)
.

The discretisation is naturally performed by computing all scalar quantities in (Eq. 33) at

the centre of the cells, followed by linear interpolation to the face centres. This discretisation of

ṁ is used in this study due to its demonstrated stability in the work of Zanutto et al. (2022b).

More details of this integration can be found in Zanutto et al. (2022b), where this discretisation

is referred to as ’model 1’.

This method is called the "unshifted method" as the source terms containing ṁ are discretised

on the interface where 0 < αg < 1 since it takes non-zero values only in these cells. It has

demonstrated its effectiveness for dissolution problems in both one-dimensional static systems

and three-dimensional dynamic scenarios involving dissolving rising bubbles. As we will show in

section 6, this method fails in the modelling of precipitation phenomena. To overcome these

difficulties, we propose the shifted method described in the following section 4.2.2.

4.2.2 The shifted method inspired from two-field formulation

Inspired by the work of Gennari et al. (2022) within the two-field framework, we propose

to shift the computation of ṁ within the gas phase. Also known as the velocity extension

algorithm, this shifted method was developed and successfully implemented by Gennari et al.

(2022). Originally introduced by Hardt and Wondra (2008), the algorithm was designed to

reduce numerical instabilities arising when the source term is distributed across a narrow layer of

cells, which may not yield a divergence-free velocity field in all liquid and mixed cells. Gennari

et al. (2022) adopted this approach to ensure a divergence-free velocity in the liquid phase with

minimal computational effort, in contrast to the method employed by Hardt and Wondra (2008),

which requires solving an additional Helmholtz equation.

16



The first implementation step involves computing the rate of mass transfer ṁ (using (Eq. 32)

and the model 1 proposed by Zanutto et al. (2022b)) within interfacial cells. The interfacial cells,

where the value of ṁ is different from zero, are designated as donor cells. For every donor cell

with coordinates (i, j), a centred stencil of size (2n+ 1)× (2n+ 1), where n denotes the stencil

size, is defined on the donor cell. Within this stencil, every cell presenting a volume fraction

αg = 1 is designated as an acceptor cell. The number of these acceptor cells per donor cells is

stored in the field avg as illustrated in Fig. 2a. Note that if there is zero acceptor cell within

the stencil, we increase its size n. A donor (acceptor) may have multiple acceptors (donors).

•
(i, j)

avg|i,j = 3

×

× ×
Ωg

Ωl

Σ

(a)

•

• •

•

•

×

× ×
Ωg

Ωl

Σ

(b)

Figure 2 – 2D illustration of the steps involved in calculating mass transfer rate ṁ′. The acceptor

cells are marked with the symbol ×, and the reference donor cell is marked with the symbol •,

(a) calculation of the field avg|i,j related to cell indexed (i, j). Here avg|i,j = 3 and the stencil

size is 1 ; (b) example of computation of ṁ′. The contribution is equal to ṁ
avg

.

The second step is the redistribution of the mass transfer rate term ṁ. For each acceptor,

the contribution from all its relative donors is computed and stored in the new field ṁ′, which

is defined only for acceptor cells and set to null for the others, as illustrated in (Fig. 2b). This

displacement of the source term ensures that the total mass transferred between phases per

unit of time is conserved. Finally, the rate of mass transfer ṁ is replaced in (Eq. 20) (in the

projection step of the Navier-Stokes equations) and in (Eq. 26), respectively as

∇ · u = −ṁ′
(

1

ρg
− 1

ρl

)
, (34)

and
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∂αg

∂t
+∇ · (αgu) = −ṁ′

ρg
. (35)

The shifted method relocates the source term initially computed at the interface in a narrow

layer of cells close to Σ in the gas phase. The acceptor cells receive information from their

respective donor cells, regardless of the mass transfer direction (i.e. from liquid to gas or vice

versa). Consequently, the new field ṁ′ remains zero in the liquid phase and at the interface.

5 Dissolution Validation

In this section, the proposed method is validated through several test cases used in the

literature for dissolution phenomena. The aim is to validate the shifted method with dissolution

problems used in the literature. In this section and the following, we recall that, the gas phase

is a pure phase only constituted by A-component while the liquid phase is a dilute solution of

A-component into B-component. Only the diffusion of the A-component is studied. Both cases

studied in this section are static cases in which the phases are not subjected to flow or volume

forces such as gravity.

5.1 1D-validation of dissolution phenomena

The 1D-dissolution serves as a fundamental model for analysing phase change phenomena.

The model describes a planar interface separating liquid and gas phases, where the dissolution

of the gas phase into the liquid medium generates fluid flow and interface movement. This

benchmark case aims to validate critical aspects: (i) the interfacial mass transfer calculation,

(ii) the volume variation of the gas phase and (iii) the accurate capture of the discontinuous

variation of concentration at the interface. The analysis examines the diffusion of a single

chemical species, denoted as A. The saturation ratio ζi of a generic species i is defined to

compare the initial concentration in the liquid phase ρ0i,l to the thermodynamic equilibrium

density ρ∗i,l of the liquid phase imposed by Henry’s law (Eq. 11). This saturation ratio is

expressed as

ζi =
ρ0i,l
ρ∗i,l

. (36)
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In agreement with these notations, ρ0i,g denotes the initial concentration and ρ∗i,g the thermody-

namic equilibrium density of species i in the gas phase. In the initial state, the liquid phase is

characterized by a saturation ratio ζA = 0 (i.e. ρ0A,l = 0), while the gas phase consists purely of

species A (where ρ0A,g = ρ∗A,g = ρg).

Table 1 – Properties of the gas and liquid phases.

Phase Density [kgm−3] Viscosity [N sm−2]
liquid 1× 103 1.05× 10−3

gas 1 1.46× 10−5

For this class of problems, Crank (1979) derived an exact solution that provides both the

concentration profile (Eq. 37) and the kinetics of phase volume change (Eq. 38)

ρA,l (x, t) = HAρg

(
1− erf

(
x− li

2
√

DA,lt

))
, (37)

lI(t) = 2HAρg

√
DA,lt

π
. (38)

The system properties are detailed in Table 1, with analyses conducted for two diffusion

coefficients: DA,l = 1×10−6 m2 s−1 and DA,l = 1×10−8 m2 s−1. By defining the Schmidt number

Sc to compare the diffusion of momentum to the diffusion of mass, as

Sc =
µl

ρlDA,l

. (39)

These diffusion coefficients correspond to Schmidt numbers of Sc = 1.05 and Sc = 1.05× 102,

respectively. Both cases employ a Henry’s coefficient HA = 5× 10−1.

The simulation domain extends to a length of L = 10Lref, where the characteristic length

Lref equals 1 × 10−2m. Initially, the interface is positioned at lI(t = 0) = 0, with the gas

phase occupying the left region (−L/2 ≤ x ≤ lI) and the liquid phase occupying the right

region (lI ≤ x ≤ L/2) : x/Lref ∈ J−5, 5K. The boundary conditions of the species conservation

equation (Eq. 15) and Navier-Stokes equations (Eq. 20), (Eq. 24) include a Neumann condition

at x = L and symmetry conditions at all other domain boundaries. The computational mesh

consists of 1600 uniform cells along the x-axis. The simulation is performed using a time step

δt = 1× 10−4 s. The reference time is tref =
ρlL

2
ref

µl
, and the reference concentration equals the
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gas phase concentration, where ρA,ref = ρ∗A,g = 1.
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Figure 3 – Validation results of the 1D-dissolution problem for a Henry’s coefficient HA = 5×10−1

and a saturation ratio ζA = 0. As both unshifted and shifted methods led identical results,

only the results of the unshifted method are presented. (a) Interface kinetics for two Schmidt

numbers : Sc = 1.05 and Sc = 1.05 × 102 and (b) concentration profile along the x-axis at

different simulation times for the case Sc = 1.05.

Fig. 3 shows the results obtained with both unshifted and shifted methods proposed in

this work. Since the results for both methods are strictly superposed, only the results of

the unshifted method are presented and called "Numerical". Fig. 3a presents the numerical

results for interface kinetics in both cases, compared against the theoretical solution (Eq. 38).

The simulations accurately predict the interface position lI(t) in agreement with theory for

both Schmidt numbers. Fig. 3b displays the concentration profiles for the more diffusive case

Sc = 1.05. Comparison with theoretical concentration profiles (Eq. 37) demonstrates that the

model effectively captures the concentration discontinuity at the interface over time, while

accounting for the gas phase volume variation.

5.2 3D-validation of dissolving bubble in an undersaturated solution

To finalize the dissolution validation process, a study of dissolving bubble is performed. In

3D, an analytical solution exists for a similar problem in which the advective mass flux relative
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to the mass transfer (Eq. 20) is neglected. This solution was established by Epstein and Plesset

(1950) for a domain where the inner boundary is a sphere of constant radius R:

∂ρA
∂t

= ∇ · (DA,c∇ρA) ,

ρA (r, t = 0) = ρ0A,l for r > R,

ρA (R, t) = ρ∗A,l for t > 0,

lim
r→∞

ρA (r, t) = ρ0A,l for t > 0.

(40)

The solution to equation (Eq. 40) can be used to approximate the case of a bubble exchanging

matter with the surrounding liquid phase (i.e. where R is time dependant). According to Duda

and Vrentas (1971), this quasi-steady approximation is accurate as long as mass transfer is slow

(i.e. the effects of liquid velocity are negligible compared to diffusion) and the growth of the

concentration boundary layer is rapid compared to the dissolution rate. The solution, expressed

in terms of the radius of the sphere, is

Ṙ =
DA

(
ρ0A,l − ρ∗A,l

)
ρg

[
1

R
+

1√
πDA,lt

]
. (41)

When the full system of equations is solved numerically, including mass flux relative to the mass

transfer (Eq. 20), the radius evolution R predicted by the Epstein-Plesset (EP) model (Eq. 41)

overestimates the experimental shrinkage velocity by approximately 10% in an air-water system

(Duncan and Needham (2004)). To account for this discrepancy, a correction factor is applied

to the theoretical solution, resulting in what will be referred to as the corrected EP model.

The computational domain consists of a cube with sides of length 30Lref. A composite mesh

strategy was implemented, which comprises two regions: a uniform mesh within a central cube

of length lu = 4Lref with 50 cells per diameter, and a non-uniform (exponential variation of step

size) mesh in the remaining domain. The liquid phase has an initial concentration of A ρ0A,l = 0

giving a saturation ratio ζA = 0. The properties of the phases are indexed in Table 1 and a

Henry’s coefficient HA = 2 × 10−1 is used with a diffusion coefficient DA,l = 2 × 10−5m2 s−1,

corresponding to a Schmidt number of Sc = 5.25× 10−2. The simulation is performed using a

time step δt = 1× 10−4 s. Only one eighth of the sphere is simulated by applying symmetry

condition on the corresponding boundaries. The other boundary conditions include a Neumann
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condition for the species conservation equation (Eq. 15) and Navier-Stokes equations (Eq. 20),

(Eq. 24).

The results on the evolutions of the radius over time are shown in Fig. 4. As both methods

produced identical results, only the unshifted method’s results are displayed, labelled as ’Nu-

merical’. As described by Duncan and Needham (2004), there is a discrepancy between the full

model simulation and the solution provided by the EP model of Epstein and Plesset (1950).

Nevertheless, taking into account the experimental observations mentioned earlier, we observe

that the simulation results align with the corrected prediction of the EP model. The slight

deviation is of the same order as the one observed in the two-field methodology (Gennari et al.

(2022)).
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Figure 4 – Temporal evolution of the bubble radius and comparison with the EP model, with and

without correction of 10%. It corresponds to a Henry’s coefficient HA = 2× 10−1, a saturation

ratio of ζA = 0 and a Schmidt number of Sc = 5.25 × 10−2. As both unshifted and shifted

methods led identical results, only the results of the unshifted method are presented.
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6 Theoretical solutions and validation for precipitation phe-

nomena

In this section, we use the 3D precipitation static test case of Scriven (1959) and propose

two additional 1D and 2D analytical solutions of the same problem. This approach addresses a

significant gap in the existing literature, which previously only provided a theoretical solution

for the three-dimensional scenario. By extending the theoretical framework to 1D and 2D cases,

we enable a comprehensive comparative analysis between the unshifted and shifted methods

across all dimensional representations of precipitation problems.

6.1 Analytical solutions for 1D, 2D and 3D cases

In this section, we examine a system consisting of a pure gas phase immersed in a super-

saturated solution (ζA > 1), with chemical species A being the unique component of the gas

phase. The analysis excludes volume forces, ensuring the centre of mass remains stationary.

The phase properties remain consistent with previous specifications, as detailed in Table 1. Our

investigation proceeds systematically through dimensionally progressive test cases.

The exact solution for this type of problems was originally developed by Scriven (1959) for a

spherical geometry (3D), yielding an equation that describes the time evolution of the sphere

radius R as

R(t) = 2κε,τ

√
DA,lt, (42)

where the dimensionless factor κε,τ depends on several key parameters: the densities of the gas

(ρg) and liquid (ρl) phases, the concentration of species A in the liquid phase at r → ∞ (ρ∞
A,l),

and the interfacial concentration determined by Henry’s law (ρ∗A,l). This factor is determined by

solving for κε,τ the following equation

−1 = 2τκ3
ε,τ exp

(
κ2
ε,τ + 2εκ2

ε,τ

) ∫ ∞

κε,τ

η−2 exp
(
−2εκ3

ε,τη
−1 − η2

)
dη, (43)

where η =
1

2

r√
DA,lt

and r is the radius corresponding to the spatial variation. Constants τ

and ε are expressed as
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τ =
ρg
ρl

ρl − ρ∗A,l

ρ∗A,l − ρ∞
A,l

and ε =
ρl − ρg

ρl
. (44)

In the literature, several articles attempt to extend this equation to 2D configurations, such

as Vachaparambil and Einarsrud (2020). These extended solutions rely on the computation of

correlations for the dimensionless factor κε,τ . Wang et al. (2016) successfully used a 3D correlation

for κε,τ that provides a good approximation of (Eq. 43). Nevertheless, these correlations are not

mathematically exact and are less accurate, especially in 2D. Here, we derived an exact 1D and

2D solutions for the factor κε,τ , which varies as a function of the configuration dimension n. For

more details on the derivation of these solutions, refer to section 8. We present here only the

final form of these theoretical solutions.

As a function of the configuration dimension n (n = 1 for 1D, n = 2 for 2D, and n = 3 for

3D), the factor κε,τ is the solution of (Eq. 45)

−1 =
2τκε,τ

F (κε,τ )

∫ ∞

κε,τ

F (η) dη, (45)

where we introduce the function F (η) expressed as

F (η) =


exp(2εκε,τη − η2) if n = 1,

η−1 exp
(
2εκ2

ε,τ ln(η)− η2
)

if n = 2,

η−2 exp
(
−2εκ2

ε,τη
−1 − η2

)
if n = 3.

(46)

From this solution, we can also derive the associated concentration profile of the solute ρA (r, t) :

ρA (r, t) =
2τκε,τ

F (κε,τ )

∫ η

κε,τ

F (η)dη. (47)

We have thus established the exact solutions for both kinetics (Eq. 45) and evolving

concentration profiles (Eq. 47) for all dimensional representations. Note that when ρl = ρg the

derived equations returns the solution given by Zener (1949).
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6.2 1D-validation of precipitation phenomena

In this case, the domain has the same characteristics as the one used in the 1D-validation of

dissolution phenomena in section 5.1. The domain length varies from 10Lref to 20Lref in function

of the interface kinetics. The mesh number varies from 1600 to 3200 in order to maintain

cell dimensions while maintaining their uniformity. As in the previous test case, initially, the

interface is positioned at lI(t = 0) = R0 = 0, with the gas phase occupying the left region

(−L/2 ≤ x ≤ lI) and the liquid phase occupying the right region (lI ≤ x ≤ L/2). The liquid

phase has an initial concentration ρ0A,l and a Henry’s coefficient HA = 2× 10−1 is used. The

initial concentration of species A in the solution is ρ0A,l corresponding to ζA > 1 since different

cases are studied. In every case, the simulation is performed using a time step δt = 1× 10−4 s.

On the first hand, a diffusion coefficient DA,l = 2 × 10−5m2 s−1 is used, corresponding to

Sc = 5.25× 10−2. The reference parameters are the same as the one defined in section 5.1. In

Fig. 5, the numerical results obtained with the unshifted method are presented while those

obtained with the new shifted discretisation of source terms are shown in Fig. 6. The results are

compared across three different kinetic cases against the theoretical solution (Eq. 42), where κε,τ

was computed using n = 1 and ρ∞
A,l = ρ0A,l, since the concentration at the boundaries remains

constant. These three cases are defined based on the value of the saturation ratio ζA, ranging

from 2 to 4, in order to simulate a broad range of kinetics behaviours. For both methods,

evolving concentration profiles was plotted for the faster interface displacement and compared

to the theoretical solutions given by (Eq. 47). A resume of tested cases can be found in Table 2

referred to as case 1, 2 and 3.

As shown in Fig. 5a, the unshifted method cannot accurately predict the interface position

R(t). The results indicate that the predicted kinetics are faster than the theoretical ones. Mainly

due to the poor captures of the concentration profiles within the liquid phase as shown in Fig. 5b

even if an accurate concentration jump is obtained.

However, Fig. 6a shows that the shifted method allow to accurately predict the interface posi-

tion R(t) in agreement with theoretical expectations. Fig. 6b displays the evolving concentration

profiles and demonstrates that the model effectively captures the concentration discontinuity at

the interface over time, while accounting for the gas phase volume variation.

On the other hand, to further challenge the shifted method presented in this study, more
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Figure 5 – Numerical results for a 1D precipitation case by using the unshifted method. They

correspond to a Henry’s coefficient HA = 2 × 10−1. (a) Interface kinetics for three different

supersaturation ζA ∈ J2, 4K and (b) concentration profiles along the x-axis for a saturation ratio

ζA = 4.

Table 2 – Summary of tests cases conducted in the context of 1D-precipitation. The dimensionless

factor κ1D
ε,τ is determined from the analytical solution (Eq. 45) for n = 1.

Case ζA HA τ κ1D
ε,τ Sc

case 1 2 2× 10−1 −5 0.1129 5.25× 10−2

case 2 3 2× 10−1 −2.5 0.2258 5.25× 10−2

case 3 4 2× 10−1 −1.66 0.3387 5.25× 10−2

case 4 9 1× 10−1 −1.25 0.4516 5.25× 10−2

case 5 90 1× 10−2 −1.12 0.5024 5.25× 10−2

case 6 90 1× 10−2 −1.12 0.5024 5.25
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Figure 6 – Numerical results for a 1D precipitation case by using the shifted method presented

in this study. They correspond to a Henry’s coefficient HA = 2× 10−1. (a) Interface kinetics for

three different supersaturation ζA ∈ J2, 4K and (b) concentration profiles along the x-axis for a

saturation ratio ζA = 4.

complex configurations are tested. Three of them, listed in Table 2, are presented in this article

in Fig. 7 in order to simulate an even broad range of kinetics behaviours. First, the initial

concentration ρ0A,l is increased to achieve ζA = 9, while using a Henry’s coefficient HA = 1×10−1.

In the next case, the Henry’s coefficient is reduced by a factor of 10. This reduction enables

the simulation of a significant species concentration discontinuity at the interface, characterized

by ζA = 90 and HA = 1 × 10−2. In the final case, the kinetics is slowed by using a diffusion

coefficient DA,l = 2× 10−7 m2 s−1, corresponding to a Schmidt number of Sc = 5.25. Finally as

shown in Fig. 7a, the simulation accurately predicts the interface position R(t) in agreement

with theoretical expectations for the three configurations tested as well as the concentration

profiles plotted for the slowest case in Fig. 7b that demonstrate that the model effectively

captures the concentration discontinuity at the interface over time, even while accounting for

huge discontinuous concentration variation.
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Figure 7 – Numerical results for three other 1D precipitation cases by using the shifted method

presented in this study. In these cases, both Henry’s coefficient HA and saturation ratio ζA vary.

(a) Interface kinetics for three different supersaturations listed in Table 2 and referred to as case

4, 5, 6 and (b) concentration profiles for the slower case (i.e. case 6) along the x-axis.

6.3 2D, 3D-validation of precipitation phenomena

Simulations were also performed on a circle (2D) and a sphere (3D) immersed in a supersat-

urated solution (ζA > 1). In both cases, the computational domain consists of a square (cube in

3D) with sides of length 30Lref. A composite mesh strategy was implemented, which comprises

two regions: a uniform mesh within a central square (cube in 3D) of length lu ranging from 4Lref

to 10Lref (depending on the kinetics) with 50 cells per diameter, and a non-uniform (exponential

variation of step size) mesh in the remaining domain. The initial configuration consists of a gas

phase with a diameter of Db = Lref = 1× 10−2m, while the liquid phase, characterized by an

initial concentration of ρ0A,l, occupies the remainder of the domain. The properties of the phases

are reported by Table 1. The system employs Neumann boundary conditions and a Henry’s

coefficient HA = 2× 10−1 is used. The theoretical solutions for the radius and concentration

profile are provided by (Eq. 42) and (Eq. 47), respectively, as function of time. In these solutions,

κε,τ was computed using (Eq. 45) with n = 2 for the 2D case (respectively n = 3 for the 3D case)

and ρ∞
A,l = ρ0A,l, since the concentration at the boundaries remains constant. Finally, a diffusion

coefficient of DA,l = 2× 10−5m2 s−1, corresponding to a Schmidt number of Sc = 5.25× 10−2,
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was selected to accelerate mass transfer and reduce computational resources while allowing

observation of significant phase volume changes within reasonable simulation times (ṁ ∝ DA,l).

A summary of the simulated test cases is provided in Table 3 where simulations was performed

using a time step δt = 1× 10−4 s.

In both cases, the concentration field is initialized by using the theoretical profile (Eq. 47)

to follow the methodology employed by Gennari et al. (2022). Indeed, while equation (Eq. 42)

indicates that the gas phase is initially non-existent at t = 0 s (i.e., R(t = 0) = 0), the Volume

of Fluid (VOF) approach requires an initialization of the volume fraction αg. This necessitates

generating the gas phase with an initial radius R(t0) = R0. Here, t0 represents the time required

to reach R0, which can be determined using

t0 =
1

DA

R2
0

4κ2
ε,τ

. (48)

These initial conditions ensure a concentration field around the circle (and the sphere) that

is consistent with their initial sizes. To optimize computational resources, the 3D simulation

was conducted on one-eighth of the sphere using symmetry conditions. For the 2D simulations,

three domain configurations were tested: a complete domain model, a half-domain model,

and a quarter-domain model. Symmetry conditions were applied in both the half and quarter

configurations. The results obtained from all three configurations demonstrated complete

consistency, validating the symmetry-based approach used in the 3D configurations.

Table 3 – Summary of tests cases conducted in the context of 2D/3D-precipitation with the

shifted method developed in this paper. The dimensionless factor κ2D
ε,τ and κ3D

ε,τ are determined

from the analytical solution (Eq. 45) for n = 2 and n = 3, respectively.

ζA HA τ κ2D
ε,τ κ3D

ε,τ Sc
2 2× 10−1 −5 0.2876 0.4205 5.25× 10−2

3 2× 10−1 −2.5 0.4802 0.6687 5.25× 10−2

4 2× 10−1 −1.66 0.6589 0.8942 5.25× 10−2

Contrary to the exploitable results obtained with the unshifted method in 1D-precipitation,

this method did not give satisfactory results for these specific cases. Indeed, in the simulation

carried out with this method, the interface was highly unstable and distorted circle and sphere

interface.
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Figure 8 – Numerical results for a 2D precipitation case by using the shifted method presented

in this study. They correspond to a Henry’s coefficient HA = 2× 10−1. (a) Interface kinetics for

three different saturation ratios ζA ∈ J2, 4K listed in Table 3 and (b) concentration profiles along

the r-axis for a saturation ratio ζA = 4.
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Figure 9 – Numerical results for a 3D precipitation case by using the shifted method presented

in this study. They correspond to a Henry’s coefficient HA = 2× 10−1. (a) Interface kinetics for

three different saturation ratios ζA ∈ J2, 4K listed in Table 3 and (b) concentration profiles along

the r-axis for a saturation ratio ζA = 4.
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Therefore, the shifted method proposed in this paper was used to obtain the results shown

in Fig. 8 and Fig. 9 for the 2D and 3D simulations, respectively. The temporal evolution of

the circle and sphere radii, compared against theoretical solutions, is presented in Fig. 8a and

Fig. 9a. Furthermore, Fig. 8b and Fig. 9b display the concentration profiles for the case ζA = 4,

alongside their corresponding theoretical solutions. The numerical results demonstrate excellent

agreement with theoretical solutions across all tested supersaturation values. The proposed

shifted method successfully captures both the interface and concentration discontinuities with

high accuracy in both spatial dimensions.

7 Mass transfer from a gas bubble in creeping flow with

phase volume change

7.1 Dissolution

Every test cases presented so far were made in static conditions in which the phases were

not subjected to flow or volume forces such as gravity. To our best of knowledge, there is a

unique test case to validate the implementation of the model for a moving bubble exchanging

matter with the surrounding undersaturated liquid phase (ζA = 0). This test case, established

by Fleckenstein and Bothe (2015), consider a bubble subjected to a gravitational field in an

undersaturated liquid. It is based on the velocity field around a rigid sphere proposed by

Hadamard (1911). The corresponding terminal velocity UP of a rigid sphere with radius R is

given by:

UP =
2

3

ρl − ρg
µl

gR2 1 + µg/µl

2 + 3µg/µl

, (49)

where g denotes the gravitational constant applied to the system. From this terminal velocity,

Fleckenstein and Bothe (2015) proposed an evolution of the sphere radius over time, based on

the Sherwood number Sh :

Ṙ(t) = −HADA,l

2

Sh (R(t))

R(t)
. (50)

This equation allows a 3D validation of the model by incorporating phase volume change
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into mass transfer in a bubble submitted to gravitational effects. In (Eq. 50), the Sherwood

number Sh depends on the Reynolds number Re and the Schmidt number Sc. In flows involving

variable-volume bubbles, the Reynolds number Re is defined by :

Re(t) =
ρcU(t)2R(t)

µc

, (51)

where U(t) denotes the magnitude of the barycentric velocity of the sphere. For this type of

test case, a correlation for the Sherwood number Sh is defined through the Péclet number

(Pe = ReSc) as (Fleckenstein and Bothe (2015)) :

Sh(t) = 2 + 0.651
Pe(t)1.72

1 + Pe(t)1.22
. (52)

This expression is valid for Re → 0 and Sc → ∞ and is based on a numerical calculation of

mass transfer in a spherical bubble, providing a good estimate for the Sherwood number.

A circular, pure gaseous phase with an initial diameter of D0
b = Lref = 4 × 10−3m is

immersed in an undersaturated liquid phase (ζA = 0). The densities and viscosities of both

phases are provided in Table 4. The values of the Henry’s constant is HA = 2× 10−1 and the

diffusion coefficient is DA,l = 1.48× 10−6 m2 s−1. These conditions correspond to a high Schmidt

number of Sc = 2.5× 102, which justifies the use of (Eq. 52) since Sc ≫ 1 and Re → 0. The

surface tension force fΣ is calculated using Equation (25), with a surface tension coefficient of

σ = 6× 10−2Nm−1.

Additionally, to validate the shifted method presented in this study against the results

reported by Gennari et al. (2022), a gravitational constant of g = 8.92m2 s−1 is applied. This

approach enables both quantitative and qualitative comparisons of bubble velocity, concentration

drag length, and overall concentration distribution as documented in Gennari et al. (2022).

The numerical domain consists of a square with sides of length lu = 30Lref . A 2D ax-

isymmetric domain is used in this study. This approach is adopted to reduce both simulation

time and computational resource requirements. The mesh configuration combines a composite

mesh along the horizontal direction x with a uniform mesh along the vertical direction y. In

the horizontal direction x, the composite mesh transitions from a uniform mesh extending to

x = 4Lref to an exponential mesh for the remaining domain. To achieve high-resolution velocity
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field measurements around the bubble, the mesh density is set to imposed 50 cells per diameter.

Table 4 – Phases properties in the rising bubble test cases.

Phase Density [kgm−3] Viscosity [Nsm−2] Diffusivity [m2 s−1] Surface tension [Nm−1]
liquid 1.245× 103 4.6× 10−1 1.48× 10−6

6× 10−2

gas 1.2 1.8× 10−5 0

In order to obtain comparable results with (Eq. 50), the simulation process is conducted in

two distinct steps (Fleckenstein and Bothe (2015); Maes and Soulaine (2020); Gennari et al.

(2022)) as illustrated in Fig. 10. The first step, spanning from t = 0 to t = t0, solves the system

of equations without source terms in (Eq. 20) and (Eq. 26). During this phase, mass transfer is

simulated without phase volume changes to establish both a steady terminal velocity field and

a concentration field around the bubble corresponding to this velocity field. The second step

starts at t = t0 with the activation of source terms in equations (Eq. 20) and (Eq. 26). This

activation enables the simulation to account for phase volume changes associated with mass

transfer.

y
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δxPelocal =
uδx

DA,l

UP

t0

de
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ti
va

ti
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ṁ

u < UP

D0
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ti
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ṁ

Figure 10 – Illustrations of the two steps during dissolution test case of mass transfer from a

gas bubble in creeping flow.
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The simulation is performed using a time step δt = 1 × 10−5 s. The reference time is set

to tref =
√
Lref/g and t0 is computed with t0/tref = 25 as in Gennari et al. (2022) and the

reference concentration is ρA,ref = ρg. We also define the local Péclet number as

Pelocal =
uδx
DA,l

, (53)

where u represents the local advection velocity intensity and δx denotes the space step of the

cell.

Nevertheless, to obtain results consistent with the semi-analytical solution (Eq. 50), an addi-

tional numerical velocity uice (called interface concentration equilibrium velocity) is considered

in place of ur in (Eq. 15) and defined as ucomp by (Eq. 19). Without this term, the simulation

failed to respect the concentration discontinuity imposed by Henry’s law at both the top and

rear of the bubble, leading to supersaturation. A comparison between the normalized concentra-

tion profile at the front and rear of the bubble, with and without the interface concentration

equilibrium velocity uice, is provided in Fig. 11 just before the second step of the simulation

(i.e. before the activation of the interface displacement). This comparison clearly show that the

interface is not at thermodynamic equilibrium without the terms involving uice.

With the use of this term the interface maintains its thermodynamic equilibrium during the

dissolution phenomena with phase volume change as shown in Fig. 12. The simulation also

accurately predicts the volume variation of the gas phase, as shown in Fig. 13, using the shifted

and unshifted mass transfer rate methodologies, in agreement with no more than 0.8% compared

with the analytical solution (Eq. 50). A quantitative representation through a concentration

map is provided in Fig. 14. Throughout the simulation, the bubble maintains its spherical shape

as expected, and concentration gradients are similar with those reported in the literature Maes

and Soulaine (2020) and Gennari et al. (2022). The terminal velocity of the bubble at t0 is

UP = 3.28× 10−2 ms−1 which is close to the velocity predicted of 3.2× 10−2 ms−1 by (Eq. 49).

Moreover, at (t− t0)/tref = −5 and (t− t0)/tref = 15, the bubble position and the concentration

drag length are similar with those presented in Gennari et al. (2022).

The interface concentration equilibrium velocity uice is not used for maintaining a sharp

interface as ucomp (discussed in section 3.1) since the interface is very sharp during every

simulations. It maintains thermodynamic equilibrium at the interface, as the competition
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Figure 11 – Concentration profile along the vertical y-axis passing through bubble centre during

dissolution phenomena without phase volume change at (t− t0)/tref = −5 for high local Péclet

number (Pelocal > 1). Comparison with (blue) and without (green) the interface concentration

equilibrium velocity uice. The value of the Henry’s constant is HA = 2× 10−1 and the saturation

ratio is ζA = 0.

7.5 8.0 8.5 9.0 9.5 10.0 10.5
y/Lref

0.0

0.2

0.4

0.6

0.8

1.0

ρ
A

( y
)
/ρ

A
,r

ef

αg

HA

Figure 12 – Concentration profile along the vertical y-axis passing through bubble centre during

dissolution phenomena with phase volume change at (t − t0)/tref = 15 for high local Péclet

number (Pelocal > 1). Results obtained with the interface concentration equilibrium velocity

uice. The value of the Henry’s constant is HA = 2× 10−1 and the saturation ratio is ζA = 0.
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between the advection term ∇ · (uρi) and the CST flux ∇ · ϕi fails to impose this interface

equilibrium. Note that this issue was encountered with multiple advection schemes, not only

CICSAM. Advection schemes such as OS-CICSAM (Saincher and V (2022), explicit advection

scheme), MSTACS (Anghan et al. (2021)), and even STACS (Darwish and Moukalled (2006))

produced the same results.
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Figure 13 – Evolution of the bubble volume normalized by its initial value during the dissolution

with diffusion coefficient DA,l = 1.48 × 10−6m2 s−1, Henry’s constant HA = 2 × 10−1, and

saturation ratio ζA = 0. The interface concentration equilibrium velocity uice with cα = 1.5 is

used in order to obtain these results for high local Péclet number (Pelocal > 1).

A discussion started by Yang et al. (2017), stated that when convection dominates diffusion

locally near the interface, the CST method generates a large numerical error. They show that

in order to capture the discontinuity at the interface accurately, the local Péclet number should

respect

Pelocal < 0.5. (54)

In simulations conducted without uice, the local Péclet number is superior to 0.5 at both the

front and rear of the bubble. It should be noted that reducing δx could achieve Pelocal < 0.5,

however it significantly increases computational resource requirements.

To expand the discussion further, a two-phase transport in a 1D tube at infinite Péclet

number was successfully conducted by Maes and Soulaine (2020) using the compressive velocity

ucomp and by Zanutto et al. (2022b) without ucomp but by using CICSAM. However, in this test
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Figure 14 – Dissolution simulation of rising bubble subjected to gravity and undersaturated

solution characterized by ζA = 0 with a henry’s coefficient HA = 2 × 10−1 and a diffusion

coefficient DA,l = 1.48 × 10−6m2 s−1 (corresponding to high local Péclet number Pelocal > 1).

The volume fraction αg and the normalized concentration map ρA/ρA,ref are presented in the

left and right respectively at (a) (t− t0)/tref = −5 and (b) (t− t0)/tref = 15. The contour of

volume fraction is set up at αg = 0.5.
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case, the mass transfer flux and the advective mass flux are perpendicular, as observed on the

sides of the bubble where the concentration jump is accurately captured by the model without

the terms involving uice (note that the local Péclet number is also inferior to 0.5 on these side).

It can be supposed that, when collinear, these two fluxes impact the accurate captures of the

concentration jump at the interface. Indeed, when a constant velocity (along the y-axis) is

introduced into the domain for the 1D-dissolution case in section 5.1 and the 1D-precipitation

case in section 6.2, the same issue arises. This confirms that collinear fluxes impact the accurate

representation of concentration jumps at the interface for high Péclet numbers.

To further investigate this phenomenon, we conducted an additional simulation using

a higher diffusion coefficient DA,l = 2.22 × 10−5m2 s−1, which ensured that Pelocal < 0.5

(Eq. 54) throughout the entire domain. The dissolving kinetics, presented in Fig. 15, were

obtained without incorporating terms involving the interface concentration equilibrium velocity

uice. Notably, despite the absence of these terms, the numerical results demonstrate excellent

agreement with the analytical solution. As shown in Fig. 15, between (t − t0)/tref = 0 and

t/tref = 15 there is huge volume variation.

The normalised concentration profiles along the y-axis passing through the bubble centre,

as illustrated in Fig. 16, demonstrate that the interface equilibrium is maintained throughout

the simulation of the rising bubble under low local Péclet number conditions. A quantitative

representation of the concentration distribution and bubble position is presented in Fig. 17.

Notably, the bubble maintains its spherical shape throughout the dissolution process.

The comparative analysis between simulations using DA,l = 1.48 × 10−6m2 s−1 with uice

and DA,l = 2.22× 10−5 m2 s−1 without uice (Fig. 11, Fig. 12 and Fig. 16) reveals that the local

Péclet number significantly influences the calculation of the thermodynamic equilibrium at the

interface. It is important to mention that the use of uice influence the kinetics of the interface.

7.2 Precipitation

Finally, the 3D dynamic simulation of the growth of a rising bubble subjected to gravity

is study in order to exhibit the relevance of the shifted numerical methodology proposed in

this study in solving precipitation phenomena with the one-field approach. In this case, the

set up is the same as the one used for the dissolving rising bubble studied in section 7.1. A
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Figure 15 – Evolution of the bubble volume normalized by its initial value during the dissolution

with diffusion coefficient DA,l = 2.22× 10−5m2 s−1 (corresponding to low local Péclet number

Pelocal < 0.5), Henry’s constant HA = 2× 10−1, and saturation ratio ζA = 0. Results obtained

without the interface concentration equilibrium velocity uice.

Henry coefficient of HA = 2× 10−1 is used with an initial concentration of the continuous phase

of ρ0A,l = 4.8× 10−1 kgm−3 corresponding to a saturation ratio ζA = 2. A diffusion coefficient

DA,l = 2.22 × 10−5m2 s−1 is used in order to achieve Pelocal < 0.5 to avoid both inaccurate

concentration discontinuity at the interface and the use of uice as demonstrate in section 7.1.

Rather than dividing the simulation into two distinct steps (step 1: without phase volume

change and step 2: with phase volume change) as made previously, the current simulation is

conducted by immediately activating the phase volume change. Specifically, the source terms

accounting for phase volume variation in equations (Eq. 20) and (Eq. 26) are activated from the

beginning of the simulation.

Fig. 18 shows the results, of this study where the normalized volume of the dispersed phase

is plotted as a function of the time after a total simulated physical time of 0.2 s. The bubble

exhibits spherical shape during the simulation time as it was the case in the dissolution cases.

Moreover, a comparison between the numerical and empirical mass transfer coefficient kA is

conducted. Numerically, the mass transfer coefficient is computed as

kA =
nΣ ·∇ (DA,lρA) |αg=0.5

ρ0A,l − ρA,g

. (55)

The empirical mass transfer coefficient kA,emp is computed though the Sherwood number with
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Figure 16 – Concentration profile along the y-axis passing through bubble centre during

rapid dissolution phenomena at (a) (t − t0)/tref = −5 without phase volume change and (b)

(t−t0)/tref = 15 with phase volume change. Results obtained without the interface concentration

equilibrium velocity uice for low local Péclet number (Pelocal < 0.5). The value of the Henry’s

constant is HA = 2× 10−1 and the saturation ratio is ζA = 0.
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Figure 17 – Rapid dissolution simulation of rising bubble subjected to gravity and undersaturated

solution characterized by ζA = 0 with a henry’s coefficient HA = 2 × 10−1 and a diffusion

coefficient DA,l = 2.22× 10−5m2 s−1 (corresponding to low local Péclet number Pelocal < 0.5).

The volume fraction αg and the normalized concentration map ρA/ρA,ref are presented in the

left and right respectively at (a) (t− t0)/tref = −5 and (b) (t− t0)/tref = 15. The contour of

volume fraction is set up at αg = 0.5.
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Figure 18 – Evolution of the bubble volume normalized by its initial value during the precipitation

with diffusion coefficient DA,l = 2.22× 10−5m2 s−1 (corresponding to low local Péclet number

Pelocal < 0.5), Henry’s constant HA = 2× 10−1, and saturation ratio ζA = 2. Results obtained

without the interface concentration equilibrium velocity uice.
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Shemp =
kA,empLref

DA,l

, (56)

where the values of the Sherwood number is obtain from (Eq. 52). The mass transfer coefficients,

calculated from both empirical correlations and numerical simulations, are presented in Table 5.

Table 5 – Comparison between mass transfer coefficients, calculated from both empirical

correlations and numerical simulations.

t/tref kA,emp[m
2 s−1] kA,num[m

2 s−1]
5 4.24× 10−2 3.67× 10−2

10 3.82× 10−2 3.25× 10−2

The shifted method employed in this study produces a mass transfer coefficient of the same

order of magnitude as that derived from empirical correlations with 15% errors. This demon-

strates that the model successfully captures the kinetics of the precipitation phenomenon. The

consistency between the calculated mass transfer coefficients, coupled with thorough validation

against previous test cases, supports our hypothesis that the normalised dispersed phase volume

variation accurately reflects the modelled physical phenomenon. A quantitative representation of

the concentration distribution is provided in Fig. 19, and the concentration profile at t/tref = 10

presented in Fig. 20 demonstrates that the interface maintains its thermodynamic equilibrium

throughout the simulation without the use of uice.
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Figure 19 – Precipitation simulation of rising bubble subjected to gravity and supersaturated

solution characterized by ζA = 2 with a henry’s coefficient HA = 2 × 10−1 and a diffusion

coefficient DA,l = 2.22× 10−5m2 s−1 (corresponding to low local Péclet number Pelocal < 0.5).

Normalized concentration map ρA/ρA,ref are presented in function of the time : (a) t/tref = 0,

(b) t/tref = 5 and (c) t/tref = 10. The contour of volume fraction is set up at αg = 0.5. Results

obtained without the interface concentration equilibrium velocity uice.
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Figure 20 – Concentration profile along the vertical y-axis passing through bubble centre during

precipitation phenomena with phase volume change at t/tref = 5. Results obtained without the

interface concentration equilibrium velocity uice for low local Péclet number (Pelocal < 0.5). The

value of the Henry’s constant is HA = 2× 10−1 and the saturation ratio is ζA = 2.

43



8 Conclusion

In this work we implemented the single-field C-CST formulation developed by Maes and

Soulaine (2020) within the Notus open-source CFD software, employing a Volume of Fluid (VOF)

approach based on Ubbink and Issa (1999) Compressive Interface Capturing Scheme for Arbitrary

Meshes (CICSAM). While existing single-field methodologies (Maes and Soulaine (2020), Zanutto

et al. (2022b)) have demonstrated success in modelling dissolution phenomena, the simulation

of precipitation processes has remained an unaddressed challenge. Our study reveals that

state-of-the-art discretisation approaches in single-field literature prove inadequate for accurately

representing precipitation phenomena. To overcome these limitations, we introduced a shifted

discretisation methodology for source terms implying mass transfer rate. This approach,

developed by extending the work of Malan et al. (2021) and Gennari et al. (2022), establishes a

framework that enables both modelling and simulation of precipitation phenomena within the

single-field context.

Additionally, our contribution extends beyond implementation to theoretical foundation,

presenting new analytical solutions for both one-dimensional and two-dimensional static pre-

cipitation phenomena based on the three-dimensional solution developed by Scriven (1959).

This comprehensive approach establishes complete dimensional (1D, 2D and 3D) benchmarks

that account for phase volume changes during precipitation, addressing a significant gap in the

existing literature.

Comprehensive validation across multiple scenarios demonstrates the robustness of our

approach. For static cases, the method shows excellent agreement with established analytical

solutions across multiple dimensions: the one-dimensional solutions of Crank (1979), the three-

dimensional approximative solution of Epstein and Plesset (1950) for dissolution phenomena,

and Scriven (1959) three-dimensional solution for precipitation. Additionally, our work validates

successfully against newly developed analytical solutions for both one-dimensional and two-

dimensional static precipitation scenarios. This study achieves a significant step by bringing

single-field approaches to parity with two-field methods in modelling both dissolution and

precipitation phenomena.

In dynamic scenarios involving gas bubbles in creeping flow, our numerical results demonstrate

strong alignment with Fleckenstein and Bothe (2015) semi-analytical solutions across various
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configurations. However, an important limitation emerged when replicating high Schmidt

number conditions (Sc=250): maintaining thermodynamic equilibrium at the interface required

the implementation of an additional velocity term, uice. While this modification proves

unnecessary for cases with lower Péclet numbers (Pelocal < 0.5), it raises important questions

about concentration jump at the interface within the single-field framework for high Péclet

numbers. This particular aspect of the methodology requires further investigation, as our

analysis remains inconclusive and opens future research in competition between advection and

diffusion velocities in the context of single-field mass transfer with phase volume change.

In addition to these investigations, our future work objectives also include validating the

proposed method against experimental setups. Specifically, we plan to validate our approach

using microfluidic channels or in situ microspectroscopy for both low-pressure (Tan et al. (2012))

and high-pressure conditions (Kuhn and Jensen (2012), Deleau et al. (2020)).
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Appendix A. Growth of a gas bubble by mass transfer

This appendix provides a proof of the analytical solution (Eq. 45) used in section 6 to validate

the proposed model and its implementation. We consider the growth of a gas bubble caused by the

precipitation of a chemical species A in a supersaturated liquid solution of A in a solvent B. Following

the proof of the spherically symmetric solution (3D) derived in Scriven (1959), we develop mirror

symmetric (1D) and axially symmetric (2D) solutions where the bubble growth is driven solely by mass

transfer.

In the following, we consider the n-dimensional problem, where n ∈ J1, 3K characterizes the type of

symmetry and invariance. The case n = 1 corresponds to mirror symmetry, where the solution remains

invariant under translation in any direction parallel to the plane of symmetry. For n = 2, the problem

exhibits axial symmetry, implying that the solution is invariant under both rotation around the axis

and translation along it. Finally, for n = 3, the system possesses spherical symmetry, meaning that the

solution remains unchanged under any rotation around the origin. This particular case has previously

been derived by Scriven (1959). Owing to these symmetries, only a single spatial coordinate, denoted r,

is required, representing the shortest distance from any point to the object defining the symmetry

(plane, axis, or point). The interface between the gas phase g and the liquid phase ℓ is denoted by Σ

and is defined as the set of points located at a distance r = R(t) at time t. Its normal vector is denoted

by nΣ. The geometric configuration is illustrated in Fig. 21.

O
R(
t)

nΣ

phase g

pure A (gas)

phase ℓ

solution of A & B (liquid)

Σ

Figure 21 – Cross-section of the gas bubble for the axially (2D) or spherically (3D) symmetric

cases. The gas bubble (phase g), bounded by the surface Σ, is composed of a pure chemical

species A that grows in a supersaturated liquid solution of A in B (phase ℓ).

Our goal is to establish the evolution law governing the bubble radius R(t) and the mass concentration

of species A over time subject to the following hypotheses:

1. The gas phase g consists solely of species A with a constant mass concentration ρA.

2. The densities of both the gas and liquid phases are constant and denoted by ρg and ρl, respectively.
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3. The velocity within the gas phase g is zero.

4. The bubble growth is driven exclusively by mass transfer. For instance, the effects of surface

tension will be neglected.

5. The mass concentration of species A at the interface Σ remains constant and is denoted by ρ∗A,l.

6. At r → ∞, the mass concentration of species A is a constant denoted by ρ∞
A,l.

In the following, the mass concentration fields of species A and B are denoted by ρA(r, t) and ρB(r, t),

respectively. By hypothesis 1, ρB(r, t) = 0 for all r < R(t). Furthermore, by hypothesis 2, the densities

of both phases are related to the mass concentrations as follows:

ρg = ρA(r, t) and ρl = ρA(r, t) + ρB(r, t). (57)

Mass conservation in both phases is expressed as

∂ρ

∂t
+∇ · (ρu) = 0. (58)

Applying hypothesis 2 and considering spatial invariance, this equation simplifies to

1

rn−1

∂rn−1u(r, t)

∂r
= 0, (59)

where u(r, t) represents the velocity along the normal direction. The velocity components in all

other directions are zero. The jump condition for the density across the interface Σ is given by

−ρgṘ(t) = ρl
(
u
(
R(t), t

)
− Ṙ(t)

)
, (60)

where Ṙ(t) denotes the time derivative of the bubble radius corresponding to the interface velocity.

Introducing the following notation simplifies this expression:

εṘ(t) = u
(
R(t), t

)
with ε =

ρl − ρg
ρl

. (61)

Solving (Eq. 59) using the jump condition (Eq. 61) gives the relationship between the velocity field

and the bubble radius:

rn−1u(r, t) =


0 if r < R(t)

εRn−1(t)Ṙ(t) otherwise
. (62)
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Notably, if ρg = ρl, the velocity in both phases is identically zero.

In each phase, the mass conservation of species A is governed by the equation

∂ρA
∂t

+∇ · (ρAu) = ∇ · (D∇ρA), (63)

where D denotes the diffusion coefficient of species A in the solution that is supposed to be constant.

Under hypotheses 1 and 3, the jump condition across interface Σ gives the relation

−ρgṘ = ρA(u− Ṙ)−D
∂ρA
∂r

at
(
R(t), t

)
. (64)

Applying the boundary condition on velocity (Eq. 61) along with hypothesis 5, we obtain

(ρg − ωρ∗A,l)Ṙ(t) = D
∂ρA
∂r

(
R(t), t

)
with ω = 1− ε. (65)

Applying hypothesis 2 and using (Eq. 63) together with the velocity evolution (Eq. 62), the

conservation equation for species A satisfies the equation

rn−1∂ρA
∂t

+ εRn−1Ṙ
∂ρA
∂r

= D
∂

∂r

(
rn−1∂ρA

∂r

)
, (66)

where the entire equation has been multiplied by rn−1. This equation is subjected to the following

initial and boundary conditions:

∀r > 0, ρA(r, 0) = ρ∞
A,l initial condition, (67a)

∀t > 0, ρA
(
R(t), t

)
= ρ∗A,l boundary condition at Σ (hyp. 5), (67b)

∀t > 0, ρA(∞, t) = ρ∞
A,l boundary condition at infinity (hyp. 6). (67c)

Let us seek solutions to (Eq. 66) subject to the initial and boundary conditions (Eq. 67a), (Eq. 67b),

and (Eq. 67c) together with the jump condition (Eq. 65). There exists a functional relationship φ that

relates ρA(r, t) to the other variables, satisfying

ρA(r, t)− ρ∞
A,l = φ(ρ∗A,l − ρ∞

A,l, ρg − ωρ∗A,l, D, ε, r, t).

According to the Vaschy-Buckingham theorem, using ρ∗A,l − ρ∞
A,l, D, and t as fundamental units,

this relation can be rewritten as
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ρA(r, t)− ρ∞
A,l

ρ∗A,l − ρ∞
A,l

= φ

(
r√
4Dt

, ε, τ

)
with τ =

ρg − ωρ∗A,l

ρ∗A,l − ρ∞
A,l

, (68)

where the factor 4 has been introduced to simplify the final expression. Evaluating this expression

at
(
R(t), t

)
and applying the boundary condition (Eq. 67b), we obtain

1 = φ

(
R(t)√
4Dt

, ε, τ

)
.

Since ε and τ are fixed parameters of the problem, considering that the evolution of mass concen-

tration ρA is monotonous between R(t) and infinity, there exists a value κε,τ such that 1 = φ (κε,τ , ε, τ)

which leads to the equality

κε,τ =
R(t)√
4Dt

, that is R(t) = κε,τ
√
4Dt. (69)

Next, we aim to determine the value of the constant κε,τ . To achieve this, it is necessary to solve

(Eq. 66) by seeking a solution of the form (Eq. 68). To simplify the notation, we introduce the following

quantities:

φε,τ (η) = φ

(
r√
4Dt

, ε, τ

)
with η =

1

2

r√
Dt

. (70)

The partial derivatives of η with respect to t and r are given by ∂η
∂r = 1√

4Dt
and ∂η

∂t = − η
2t , thus,

the partial derivatives of ρA can be expressed as functions of φε,τ

∂ρA
∂t

= −(ρ∗A,l − ρ∞
A,l)

η

2t
φ′
ε,τ (η), (71a)

∂ρA
∂r

=
ρ∗A,l − ρ∞

A,l√
4Dt

φ′
ε,τ (η), (71b)

and
∂2ρA
∂r2

=
ρ∗A,l − ρ∞

A,l

4Dt
φ′′
ε,τ (η), (71c)

where the prime notation denotes the derivative with respect to η. Using (Eq. 71b) and (Eq. 71c),

the diffusion term in (Eq. 66) can be expressed as

∂

∂r

(
rn−1∂ρA

∂r

)
=

ρ∗A,l − ρ∞
A,l

4Dt
rn−1

(
n− 1

η
φ′
ε,τ (η) + φ′′

ε,τ (η)

)
. (72)

Using Eq. 69, we can rewrite the Rn−1(t)Ṙ(t) factor as
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Rn−1(t)Ṙ(t) = 2D(4Dt)
n−2
2 κnε,τ . (73)

Substituting expressions (Eq. 71a), (Eq. 71b), (Eq. 73), and (Eq. 72) into (Eq. 66) and multiplying

by 2t
rn−1(ρ∗A,l−ρ∞A,l)

, we obtain

−ηφ′
ε,τ (η) + εκnε,τ

4Dt

rn−1
(4Dt)

n−2
2

1√
4Dt︸ ︷︷ ︸

1
ηn−1

φ′
ε,τ (η) =

1

2

(
n− 1

η
φ′
ε,τ (η) + φ′′

ε,τ (η)

)
. (74)

Rearranging the terms, we obtain the following ordinary differential equation:

φ′′
ε,τ (η) +

(
n− 1

η
−

2εκnε,τ
ηn−1

+ 2η

)
φ′
ε,τ (η) = 0. (75)

The initial and boundary conditions (Eq. 67a), (Eq. 67b), and (Eq. 67c) yield the constraints:

φε,τ (∞) = 0, (76a)

φε,τ (κε,τ ) = 1, (76b)

and φε,τ (∞) = 0. (76c)

Integrating (Eq. 75) once, we obtain, up to a multiplicative constant C,

φ′
ε,τ (η) = CF (η) with F (η) =



exp(2εκε,τη − η2) if n = 1,

η−1 exp
(
2εκ2ε,τ ln(η)− η2

)
if n = 2,

η−2 exp
(
−2εκ2ε,τη

−1 − η2
)

if n = 3.

(77)

To determine the constant C, we use the mass concentration jump condition (Eq. 65) along

with (Eq. 71b):

(ρg − ωρ∗A,l)
2Dκε,τ√

4Dt
= D

ρ∗A,l − ρ∞
A,l√

4Dt
φ′
ε,τ (κε,τ ). (78)

Substituting φ′
ε,τ (κε,τ ) with CF (κε,τ ) and rearranging the terms gives

CF (κε,τ ) = 2τκε,τ . (79)

Thus, the solution is given by
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φ′
ε,τ (η) = 2τκε,τ

F (η)

F (κε,τ )
. (80)

Integrating (Eq. 80) with respect to η from κε,τ to infinity gives

φε,τ (∞)− φε,τ (κε,τ ) =
2τκε,τ
F (κε,τ )

∫ ∞

κε,τ

F (η) dη. (81)

Applying the boundary conditions (Eq. 76b) and (Eq. 76a), the value of the growth coefficient is

obtained by solving one of the following equation for κε,τ , depending on the dimension n

−1 = 2τκε,τ exp(κ
2
ε,τ − 2εκ2ε,τ )

∫ ∞

κε,τ

exp(2εκε,τη − η2) dη for n = 1, (82a)

−1 = 2τκ2ε,τ exp
(
κ2ε,τ − 2εκ2ε,τ ln(κε,τ )

) ∫ ∞

κε,τ

η−1 exp
(
2εκ2ε,τ ln(η)− η2

)
dη for n = 2, (82b)

−1 = 2τκ3ε,τ exp
(
κ2ε,τ + 2εκ2ε,τ

) ∫ ∞

κε,τ

η−2 exp
(
−2εκ3ε,τη

−1 − η2
)
dη for n = 3, (82c)

where τ defined in (Eq. 68) can be rewritten as τ =
ρg
ρl

ρl−ρ∗A,l

ρ∗A,l−ρ∞A,l
.
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