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Abstract

In the present work, we propose a time-splitting method to handle the treatment of pressure-velocity
coupling in the context of subsonic compressible flows. We extend the well-known incremental pressure
correction method for incompressible flows to subsonic compressible flows by solving, at each time step
and for the temporal pressure increment variable, an elliptic equation involving a linear term. The
governing equations, written in primitive variables, consist of the compressible Navier–Stokes equations
along with the energy conservation equation. Closure with any chosen fluid equation of state enables
the calculation of relevant thermophysical fluid properties. After deriving the proposed method and
recalling its non-incremental counterpart, spatial and temporal second-order convergence are measured
for both methods on various verification test cases. The classical pressure accuracy limitations of the
non-incremental method for incompressible flows are overcome when applied to compressible subsonic
flows due to the different nature of the pressure equation. The incremental method is subsequently ap-
plied to steady and unsteady high-gradient temperature and density flows, i.e. beyond the Boussinesq
approximation known as Non-Oberbeck-Boussinesq flows, such as thermoacoustic wave propagation
and natural convection problems. Both verification and validation processes are systematically and
carefully detailed. Finally, Direct Numerical Simulation of three-dimensional compressible Rayleigh–
Bénard turbulent convection of highly compressible fluid supercritical carbon dioxide is proposed. The
parallel implementation efficiency of the method is also reported throught strong and weak scalability
tests in the last three-dimensional case up to 131,072 cores. We demonstrate the capacity to provide
a full second-order accurate and efficient incremental pressure correction method to solve subsonic
compressible flows.
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1. Introduction

The current climate situation necessitates the development of innovative strategies to meet the
future energy demands through sustainable energy processes simultaneously addressing the climate
crisis. In the recent years, several solutions have been proposed in both energy production and energy
storage. Among others, we can cite hydrogen storage and production, carbon dioxide storage, carbon
dioxide plume gas technology using subsurface CO2 for power generation, trans-critical CO2 power
cycle for efficient power generation. In such processes, working fluids are submitted to high pressure
and/or high temperature and become highly compressible and at subsonic regime. It is thereby ev-
ident that for advancing the sustainable energy processes enhancement, both from scientific as well
as technological perspectives, comprehending the fluid behaviour in high pressure (and temperature)
systems is of prime importance. This perspective creates an imminent need to develop modelling and
simulating tools which could provide insights into the flow dynamics varying from local scale to real
applications scales. This need converges with advancements in hardware architectures and the rise
of large-scale computational clusters, which have ushered in a paradigm shift in computational sci-
ence. Petascale supercomputers, capable of running simulations on more than 100,000 processors, are
now increasingly common. While this computational power offers unprecedented opportunities, it also
introduces significant challenges at every level of a Computational Fluid Dynamics code, including nu-
merical methods, I/O, visualization. Although currently limited to specialized teams and codes, such
capabilities are expected to become widespread in the near future, creating a pressing need for codes
that are not only robust and general, but also easy to use and adaptable to evolving architectures.

In CFD codes, solving pressure equations - an essential component intricately linked to velocity-
pressure coupling - remains one of the most computationally expensive aspects of simulations. Reduc-
ing CPU time and maximizing parallel efficiency are therefore critical to fully harness the power of
modern supercomputing resources. Moreover, addressing pressure-velocity coupling for both incom-
pressible and compressible fluid problems constitutes a rich and complex research domain. State-of-
the-art methods face several key challenges that must be addressed to ensure their applicability and
robustness for high-fidelity simulations. These challenges include achieving high spatial and temporal
convergence orders, managing significant fluid properties variations, enhancing numerical stability, and
implementing robust outflow boundary conditions.

The common classification for solving compressible flow problems divides methods into density-
based and pressure-based. Both methods use the momentum equation to calculate velocity field
and primarily differ in their approach to calculate the density and the pressure fields. Coming from
the supersonic flow community [1, 2, 3], density-based methods access the density by solving the
mass conservation equation and use the equation of state for computing the pressure field. Though
the method has been mainly designed for high Mach flows, several authors [4, 5] have extended its
utility to Mach number less than 0.3 problems by addressing the inaccuracy arising in this limit
case. Pressure-based methods, initially developed within the incompressible flow community [6, 7]
have been extended to low-Mach or weakly compressible flows [8, 9, 10, 11, 12, 13, 14] and all-speed
flows [15, 16, 17, 18]. They are characterized by solving implicitly a derived pressure equation from a
combination of momentum, mass (and energy) conservation. The density field can be computed from
an equation of state knowing the resolved pressure field. The proposed method in this article belongs
to the pressure-based category of methods.

For incompressible flows, the often referred “pressure correction methods” or “fractional step meth-
ods” are widely employed. These methods involve initially predicting the velocity field by solving the
conservation of momentum equation, followed by one or more correction steps to obtain the pressure
and a solenoidal velocity field. Within this family of methods, the present work focuses on non-iterative
projection methods, and does not consider any iteration or update for the computation of the pressure
variable. Approaches like the PISO or SIMPLE algorithms [7, 19, 14], which require several iterations
for SIMPLE and updates for PISO on a pressure correction variable to achieve the divergence-free
constraint, are beyond the scope of this study. A pioneering projection method, still widely used, was
developed by Chorin [6]. It involves solving the prediction step by neglecting the pressure gradient in
the momentum equation, followed by solving a Laplacian on the pressure, with the gradient used to
ensure a divergence-free velocity field. While applicable to both single-phase and two-phase flows, this
method is known to suffer from a low temporal convergence order. The Chorin method was improved
upon by Goda one [20] - later popularized by Van Kan[21] - and subsequently improved by Timmer-
mans et al. [22]. Guermond et al. classify these methods in their review paper [23] as the incremental
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pressure correction method and the rotational incremental pressure correction method, respectively.
Unlike Chorin’s method, labelled non-incremental pressure correction method, both Goda’s and Tim-
mermans’ methods incorporate the pressure gradient in the prediction stage. The unknown resolved
variable in the correction stage is the temporal increment of the pressure. A precise mathematical
analysis of these methods has been carried out in the work of Guermond et al. [23]. An important pa-
rameter to characterize a resolution methodology is the order of convergence, both in space and time.
In the aforementioned methods of Chorin [6] and Goda [20], the boundary condition on the pressure
or its increment creates an artificial boundary layer that does not compromise the spatial precision
of the discretization. However, there are significant differences in the order of temporal convergence
among the original method and its variants. According to [23], with Dirichlet boundary conditions
applied on the velocity, the standard non-incremental method by Chorin [6] converges in time at order
1 for velocity and 1/2 for pressure. In comparison, the incremental standard method by Goda [20]
converges at orders 2 and 1 for velocity and pressure, respectively, while the incremental rotational
method by Timmermans et al. [22] — reducing the artificial boundary layer — converges at orders 2
and 3/2 for velocity and pressure, respectively.

In the context of compressible subsonic flows and pressure-based projection methods, the full form
of the mass conservation equation and thermodynamic effects make the resolution of the pressure-
velocity coupling even more complex. For more than two decades, several authors have proposed
methods based on a variable coefficient elliptic equation involving a linear term for the pressure [24,
17, 25, 18, 12, 26, 27, 28] that can be considered as non-incremental pressure correction methods for
compressible flows. They have been successfully applied to single as well as multiphase flows. The
study that comes closest to the method proposed in this paper was conducted by Reichling et al. [29].
Their method belongs to the incremental pressure correction method category as it solves a pressure
increment variable by solving an elliptic equation with variable coefficients plus a three steps velocity
calculation. Their algorithm considers perfect gas equation of state and the governing equations are
written in a conservative form with the need to evaluate the divergence of the momentum. They
achieve a second-order time accuracy on the linear acoustic test case. To the best of the authors’
knowledge, the incremental pressure correction method written in primitive variables for any fluid
equation of state has not yet been proposed.

In the work of Wemmenhove et al. [30], a different approach is adopted which combines the semi–
discrete form of the continuity equation with the divergence of the momentum equation, as is classically
done for incompressible flows. The authors derive a variable coefficient equation for pressure adapted
to isentropic compressible flows, in which the right-hand side includes the second-order time derivative
of the density.

Further, though some works can be found where the authors have performed spatial convergence
studies for compressible flows using manufactured or exact solutions [9, 31, 25, 32, 33, 14], very few
have presented temporal convergence studies [9, 28, 29, 13, 14]. Among the limited work to the
author’s knowledge, Moureau et al. [28], Reichling et al. [29], and Cang and Wang [14] conduct a
temporal convergence study on the linear acoustic propagation problem with periodic boundary con-
ditions, demonstrating a second-order temporal accuracy for the first two and first-order for the latter.
Considering a pressure-based discontinuous Galerkin method, Hennink et al. [13] proposed a general
manufactured solution of the compressible Navier-Stokes equation coupled with enthalpy equation.
On constant- and variable-density solutions with Dirichlet and Neumann boundary conditions, they
observed full second-order temporal accuracy. To the best of the authors’ knowledge, no systematic
evaluation of the accuracy and order of convergence of non- and incremental correction methods for
compressible subsonic flows has been proposed in the literature.

This article presents the Incremental Pressure Correction Method, written in primitive variable,
for general Subsonic compressible Flows (IPCMSF). While for incompressible flows, the traditional ap-
proach for constructing the correction step in this class of methods relies on the null divergence property
of the velocity field, our method for compressible flows involves leveraging the pressure equation [34],
which includes a divergence term of the velocity. Furthermore, IPCMSF couples the Navier-Stokes
equation with the energy conservation equation written in temperature variable and with any chosen
equation of state for the calculation of material properties, including the density. The key feature of
this work has been to achieve second-order spatial and temporal accuracy, for velocity, pressure, tem-
perature and density for both incremental and non-incremental pressure correction methods, IPCMSF
and PCMSF, respectively. The verification process, systematically and carefully detailed, presents
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temporal convergence studies for different benchmarks of increasing complexity, from 0D test case to
manufactured 2D solution with variable thermophysical properties and Dirichlet boundary conditions
for velocity and temperature. The validation process is also carefully detailed and covers stationary
to unsteady thermally driven flows. Both the validation and verification processes provide a carefully
addressed, extensive database of test cases to support further development within the CFD community.
We also emphasize that the proposed method and analysis apply to complex thermodynamic behavior
involving large variations in material properties, typically associated with high-pressure and/or high-
temperature flows such as those encountered in compressible flows near the critical point. In such
cases, no assumptions are made about the type of fluid or flow, and a general compressible flow solver
is required. The proposed approach is therefore validated against the experiment of the propagation
of a thermoacoustic wave in a supercritical fluid, and subsequently used in the final section to study
three-dimensional turbulent Rayleigh–Bénard convection in a supercritical fluid. Finally, in order to
project the proposed method towards future challenges, high-performance computing considerations
are discussed. The current work focuses only on single-phase highly compressible flow with Dirich-
let boundary conditions on velocity, while outlet/open boundary conditions and considerations for
multiphase flow are beyond the scope of this article and will be covered up in future works.

The article is structured as follows: Section 2 presents a review of the governing equations for
compressible flow in primitive variables; In Section 3, we propose the pressure increment correction
method applied to subsonic compressible flows; Section 4 focuses on the numerical framework, em-
ploying implicit discretization of the equations using the second-order finite volume method with first
and second-order temporal orders; Section 5 illustrates various test cases for verification of the de-
veloped method covering (a) isentropic injection and linear acoustic pulse propagation test cases and
(b) a manufactured solution tailored to low to Mach numbers close to 0.6. These cases are utilized to
compute spatial and temporal convergence orders; Section 6 presents steady and unsteady 2D natu-
ral convection test cases, outside the Boussinesq approximation known as Non-Oberbeck-Boussinesq
effects, focusing on various ranges of subsonic Mach numbers. Thermoacoustic wave propagation in
perfect gas and supercritical carbon dioxide are also studied; Section 7.1 presents an application of
IPCMSF to conduct a turbulent Rayleigh–Bénard Direct Numerical Simulation of supercritical carbon
dioxide. The last Section 7.2 discusses the parallel efficiency of the IPCMSF implementation, through
both strong and weak scalability tests on the three-dimensional configuration presented in Section 7.1.
Lastly, conclusions and perspectives are provided in Section 8.

2. Governing equations

2.1. Classical formulation of a compressible flow
Under the Newtonian fluid hypothesis, the governing equations of a compressible flow expresses

the conservation of mass, momentum, energy in cp formulation, respectively

∂ρ

∂t
+ v ·∇ρ = −ρ∇ · v , (1a)

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+∇ · (µγ̇)− 2

3
∇ (µ∇ · v) + ρg , (1b)

ρcp

(
∂T

∂t
+ v ·∇T

)
= Tβp

(
∂p

∂t
+ v ·∇p

)
+∇ · (λ∇T ) + Φd . (1c)

We add to this classical formulation a derived pressure-energy equation

∂p

∂t
+ v ·∇p = −ρc2∇ · v +

βpc
2

cp
(∇ · (λ∇T ) + Φd) . (2)

A descriptive derivation of pressure-energy equation is provided in Appendix A.
These conservation equations are written in terms of primitive variables, with T (x, t) the temper-

ature field, p(x, t) the pressure field, v(x, t) the velocity field, and ρ(x, t) the density field. In (1b),
the strain rate tensor is defined as γ̇ =∇v + ∇vT , µ is the dynamic viscosity of the fluid, g is the
gravitational acceleration, and we consider the Stokes’ hypothesis for the second coefficient of viscosity
λµ=−2µ/3. In equations (1c) and (2), cp denotes the specific heat capacity, βp=−ρ−1

(
∂ρ
/
∂T
)
p

is the
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isobaric thermal expansion coefficient, λ is the thermal conductivity, and Φd is the viscous dissipation
rate of energy defined as

Φd = −2µ

3
(∇ · v)2 + µ

2
γ̇ : γ̇ . (3)

For the sake of generalization, we have introduced Φd within the equations of the article, but this term
will be ignored in all the simulations in Sections 5 and 6.

To close the system of equations introduced above and preventing the problem to be ill-posed, in
addition to specifying the initial and boundary conditions, an equation of state (EoS) for the density
and other material properties x, e.g. isothermal compressibility, thermal expansion, speed of sound or
heat capacity must be chosen as

x = EoS(T, p) . (4)

While several authors have already used the introduced modelling with equations (1) along with the
pressure-energy equation (2) [15, 35, 28, 24, 36, 37, 38, 34, 12, 26, 39], the originality of the proposed
approach is to use (2) to derive the IPCMSF. In addition, the proposed modelling of a compressible
flow (1) (4) as well as our method as presented in Section 3 make no assumptions about the type of
fluid thereby making it feasible to cover a wide range of fluids using any appropriate EoS.

3. The incremental pressure correction method

3.1. Derivation of the equation for the pressure increment variable
An incremental pressure correction approach for compressible flow requires the development and

the resolution of an equation specifically dedicated to the temporal pressure increment, denoted by ϕ.
Following the original incremental pressure correction method applied for incompressible flows [20], we
write the pressure at next iteration as pn+1=pn + ϕ.

Since density varies in compressible flows, the first step of the current method seeks to have an
estimate of the density field, ρn+1, denoted by ρ†. This is obtained through extrapolation at the
desired order, e.g. for first-order in time ρ†=ρn and for second-order in time with constant time step
as ρ† = 2ρn − ρn−1. Henceforth, any variable x† will be an estimate of x at the order of the chosen
temporal scheme.

A predicted velocity, denoted by v∗, is obtained by solving the momentum equation considering
the pressure gradient at time tn

ρ†
(
av∗ + bvn + cvn−1

∆t
+∇ · (v† ⊗ v∗)− v∗∇ · v†

)
= −∇pn +∇ ·

(
µ†γ̇∗)− 2

3
∇
(
µ†∇ · v∗)+ ρ†g ,

(5)

with a, b, c denoting the time discretization coefficients of first-order Euler backward scheme (a= 1,
b=−1, c=0) or second-order Backward Differentiation Formula (a=3/2, b=−2, c=1/2). Equation (5)
is written in its fully implicit form, but it could also be written in semi- or fully-explicit form depending
on the scales of a given problem.

Following Goda’s classical approach, we write the pressure increment equation by taking the differ-
ence between (1b) evaluated at time tn+1 and (5), while neglecting the nonlinear and the divergence
terms of the stress tensor, as

vn+1 − v∗ = −∆t

a
k†ϕ∇ϕ , (6)

with k†ϕ=
1
ρ† . Taking the divergence of (6), it reads

∇ · vn+1 −∇ · v∗ = −∆t

a
∇ ·

(
k†ϕ∇ϕ

)
. (7)

Compared to incompressible flows, where we have a divergence-free velocity, we aim to replace the
velocity divergence term in compressible flows ∇ · vn+1 in (7) by the following relation coming from
the discretized pressure-energy equation (2)

apn+1 + bpn + cpn−1

∆t
+ v† ·∇p† = −(ρc2)†∇ · vn+1 +

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

)
. (8)
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By rearranging the terms and by expressing ϕ, we obtain

∇ · vn+1 =

(
−aϕ

∆t
− (a+ b)pn + cpn−1

∆t
− v† ·∇p† +

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

))/
(ρc2)† . (9)

Finally, combining (9) and (7), we obtain for the pressure increment, at each time step, the following
variable coefficient elliptic equation involving a linear term

a2

(ρc2)†∆t2
ϕ−∇ ·

(
k†ϕ∇ϕ

)
= − a

∆t

(
∇ · v∗ +

Ṡ†
ϕ

(ρc2)†

)
, (10)

with the compressible pressure increment source term given by

Ṡ†
ϕ =

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

)
− v† ·∇p† − (a+ b)pn + cpn−1

∆t
(11)

It is worth highlighting that within the incompressible limit case (c → ∞ and βp=0), the pressure
increment equation (10) (or its counterpart pressure equation for non-incremental method) is reduced
to that of the incompressible case. Thus, the proposed method is valid in the limit of incompressible
flows. This has been numerically verified. As the results are strictly identical to those given by the
incremental pressure correction method for incompressible flows, they are not discussed in the present
work in order to better concentrate on various subsonic flows.

3.2. Full semi-implicit system of equation
This section sums up the proposed incremental pressure correction method for compressible flow.
Firstly, the material properties, as well as temperature field are extrapolated in time. Then, a

predicted velocity is computed solving v∗ as

ρ†
(
av∗ + bvn + cvn−1

∆t
+∇ · (v† ⊗ v∗)− v∗∇ · v†

)
= −∇pn +∇ ·

(
µ†γ̇∗)− 2

3
∇
(
µ†∇ · v∗)+ ρ†g ,

(12)

with the generic non-homogeneous Dirichlet boundary condition v∗ · n=v · n at the boundary of the
domain, denoted by Γ.

Then, the resolution of the pressure increment field is made by solving

a2

(ρc2)†∆t2
ϕ−∇ ·

(
k†ϕ∇ϕ

)
= − a

∆t

(
∇ · v∗ +

Ṡ†
ϕ

(ρc2)†

)
, (13)

with the homogeneous Neumann boundary condition ∂ϕ/∂n=0 on Γ since the constraint vn+1 · n=
v∗ · n is imposed in (6).

After solving ϕ, velocity and pressure are updated during a correction step as,

vn+1 = v∗ − ∆t

a
k†ϕ∇ϕ , (14)

pn+1 = pn + ϕ . (15)

Once the velocity and pressure are corrected, the next step is to compute the corresponding tem-
perature field using the (cp, T ) formulation of the energy conservation. The following is written in an
implicit form

ρ†c†p

(
aTn+1 + bTn + cTn−1

∆t
+ (∇ · (vT )− T∇ · v)n+1

)
(16)

− Tn+1β†
p

(
apn+1 + bpn + cpn−1

∆t
+ vn+1 ·∇pn+1

)
= ∇ · (λ†∇Tn+1) + Φn+1

d .
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Finally, we update the density, and the relevant thermophysical properties, of the fluid using an
EoS just before moving to the next time iteration

xn+1 = EoS(Tn+1, pn+1) . (17)

The non-incremental counterpart can be obtained by (a) not taking into account the pressure
gradient at the velocity prediction step (12); (b) considering the pressure instead of pressure increment
variable; and (c) changing the compressible pressure increment source term Ṡ†

ϕ in (13) by a compressible
pressure source term Ṡ†

p. Equation (13) and (11) are thus replace with:

a2

(ρc2)†∆t2
pn+1 −∇ ·

(
k†ϕ∇pn+1

)
= − a

∆t

(
∇ · v∗ +

Ṡ†
p

(ρc2)†

)
, (18)

Ṡ†
p =

(
βpc

2

cp

)† (
∇ · (λ†∇T †) + Φ†

d

)
− v† ·∇p† − bpn + cpn−1

∆t
. (19)

3.3. Note on the link between the proposed approaches and the continuous pressure wave equation
The semi-discrete equations (13) and (18) reveals the presence of the square of the time step in

the denominator of linear terms. This observation suggests a potential link to the discretization of the
pressure wave equation that incorporates a second order temporal derivative of pressure. To investigate
this point, let us begin with the momentum equation (1b) and the pressure equation (2), the latter
being derived from the principle of energy conservation. Taking the divergence of the momentum
equation, interchanging spatial and temporal derivatives, and using the expression for the divergence
provided by the pressure equation (2), we arrive at the following pressure equation:

− ∂

∂t

(
1

ρc2
Dp

Dt

)
+∇ ·

(
1

ρ
∇p

)
= ∇ ·R− ∂

∂t

(
βp

ρCp
(∇ · (λ∇T ) + Φd)

)
. (20)

where R represents the sum of the nonlinear and viscous terms from the momentum equation.
Equation (20) represents a general form of the pressure wave equation, similar - except for the

temperature term - to the one derived by Wemmenhove et al. for isentropic flow [30]. In their approach,
as is commonly done for incompressible flow, divergence of the momentum equation is combined
with the mass conservation equation, rather than relying on the pressure–energy relation (2). In the
isentropic case, the temperature-dependent term vanishes from Eq. (20), reducing it to an hyperbolic
wave equation for pressure. For non-isentropic flows and still using the mass conservation equation -
where density depends on both pressure and temperature the hyperbolic wave equation for pressure
can be further refined into Eq. (20) using the thermodynamic relations provided in the appendix.

In [30], the numerical approach consists of combining the discrete versions of the momentum and
continuity equations using a first-order forward Euler scheme, which replaces the time pressure de-
pendency with a density-based one. Indeed, the second-order time discretization of the pressure
equation (20) is far from being straightforward and is beyond the scope of this paper. Instead, the
proposed algorithmic approach subtracts the momentum equation at time step n+1 from the predicted
one and using the pressure-energy relation. The coefficient a

∆t appears in equation (6), and later in
front of the first time derivative of pressure. However, this is not equivalent to the discretization of
the second-order time derivative of pressure present in the first term of (20). As demonstrated later
in the article, second-order time accuracy is achieved for velocity, pressure, and temperature in both
incremental and non-incremental methods. These approaches introduce a time-splitting error when
compared to a direct time discretization of (20). In the proposed approach, the hyperbolic nature of
the pressure is approximated at each time step by an elliptic equation with a linear term.

3.4. Note on the treatment of the volume penalization method
The immersed boundary of a solid can be treated by adding a volume penalization term χ (v − v0)

to the right-hand side of the momentum equation (1a) [40]. On a Cartesian grid and obstacles whose
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boundaries are parallel to the grid directions, a large value (1020) of the parameter χ allows to assign
the velocity v equal to the given velocity v0.

In such an approach, the incremental pressure correction method needs to be slightly corrected in
order to maintain a Neumann boundary condition on the pressure increment at the immersed boundary.
It can be easily shown that k†ϕ coefficient has to be replaced by

k†ϕ =
1

ρ† − χ∆t
a

. (21)

In a finite volume code, a large value of χ on the face of the cell at the boundary (geometrically
interpolated from cell centre values) penalizes the pressure increment derivative to zero, effectively
disconnecting the fluid and solid domains. This method converges spatially at first-order only and
can be easily implemented by considering a Jacobi linear system preconditioning that locally reduces
matrix coefficient to 1 instead of a value around 1020.

4. Numerical methods

Both PCMSF and IPCMSF has been implemented within our in-house CFD code, named Notus [41],
developed in Fortran 2008 under a free software licence. Notus employs the Finite Volume Method on
a Cartesian staggered grid. In pursuit of computational efficiency and scalability, the code is designed
for high-performance parallel computing up to petascale simulations [42].

For all the presented test cases in this article, an implicit second-order scheme is used for the
advection terms, diffusion, and stress terms. BDF2 second-order time discretization is also employed,
except when specifically mentioned for the first-order Euler scheme. The advected pressure gradient
term of (11) is discretized with upwind second-order scheme and a decentering at boundaries of the
domain to avoid boundary condition on pressure. Linear systems are solved using BiCGStab or GM-
RES Krylov iterative solvers, and geometric multigrid preconditioners (PFMG and SMG for regular
and Chebychev grids, respectively) within the Hypre library [43]. The credibility and reliability of
the code are established through a thorough verification, validation, and non-regression environment.
Notus has been widely used in various scientific contexts [42, 44, 45, 46, 47, 48].

5. Verification

Verification and validation of a CFD code are essential steps in establishing a reliable numerical
tool. These concepts are extensively discussed in [49] and [50], and are more broadly addressed in [51].
Verification is the process of determining whether the implementation of a model and its associated
methods accurately represents its conceptual description and solution. The fundamental strategy of
verification involves the identification, quantification, and reduction of errors in the numerical model
and its solution. Code verification encompasses solution verification on a set of problems for which
the exact solution (available only for simplified problems) is known or manufactured. The latter does
not necessarily require a connection with the reality of a physical phenomenon. Verification thus
offers evidence that the continuous model is correctly solved by the discrete approach chosen in the
calculation code. It is primarily a mathematical and computational process.

For each verification test case of this section, we present convergence studies of IPCMSF considering
an analytical solution. Tables of the section present absolute euclidean norm ||εX ||L2

, infinity norm
||εX ||L∞ of the field X and the respective orders of convergence.

The comparison between IPCMSF and PCMSF is discussed in Section 5.4 in support of Appendix
D in which we present the temporal convergence of the verification cases for the PCMSF.

5.1. Isentropic injection in a square cavity
As a first verification test case, we present the isentropic injection problem. A square cavity of

length L=1 mm is filled with air considered as a perfect gas (R=287 JK−1 kg−1, γ = cp/cv =1.4).
At initial time, the following thermodynamic state is imposed (T0, p0, ρ0)=(300K, 101325Pa, p0

RT0
). A

fluid in the same thermodynamic state as the cavity is injected from the top with a vertical velocity
vy0 = −1.0×10−2 ms−1. The dimensionless parameters of the problem are respectively the initial
Reynolds, Mach and Prandtl numbers Re0 = ρ0u0L/µ0 = 6.36×10−1, Ma0 = u0/c0 = 5.37×10−4,
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∆t in s ||εp||L2 order ||εp||L∞ order ||εT ||L2 order
4.00×10−4 1.352×10−2 n/a 1.352×101 n/a 3.278×10−7 n/a
2.00×10−4 3.389×10−3 1.996 3.389 1.996 8.157×10−8 2.007

1.00×10−4 8.482×10−4 1.998 8.483×10−1 1.998 2.037×10−8 2.001

5.00×10−5 2.120×10−4 2.000 2.121×10−1 2.000 5.144×10−9 1.986

2.50×10−5 5.284×10−5 2.004 5.294×10−2 2.002 1.339×10−9 1.942

1.25×10−5 1.304×10−5 2.019 1.314×10−2 2.010 3.859×10−10 1.794

∆t in s ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
4.00×10−4 3.278×10−4 n/a 1.076×10−7 n/a 1.076×10−4 n/a
2.00×10−4 8.157×10−5 2.007 2.696×10−8 1.996 2.696×10−5 1.996

1.00×10−4 2.038×10−5 2.001 6.749×10−9 1.998 6.750×10−6 1.998

5.00×10−5 5.150×10−6 1.984 1.687×10−9 2.000 1.688×10−6 1.999

2.50×10−5 1.345×10−6 1.937 4.209×10−10 2.003 4.218×10−7 2.001

1.25×10−5 3.924×10−7 1.777 1.043×10−10 2.013 1.051×10−7 2.004

Table 1: IPCMSF temporal order accuracy of the isentropic injection test case. First time step ∆t=4×10−4 s equal to
CFLac=1.78×104. Mesh size 1282, tf =1×10−1 s.

Pr0=cpµ0/λ0=7.04×10−1. Thermodynamic properties are actualized during the simulation according
to the perfect gas law.

The analytical solution of the problem can be found from [52]. Under the Stokes hypothesis
(Re ≤ 1), the test case exhibits a linear velocity field vy=−v0y/L, with a constant velocity divergence
∇ · v=−v0/L. Considering our hypothesis, equation (1a) reduce to 1

ρ
dρ
dt = v0. After integration, we

obtain ρ/ρ0=exp(v0(t− t0)/L). Using the law of reversible adiabatic process, i.e. pρ−γ=cst, and the
perfet gas EoS, the thermodynamic solution of the problem starting at t0= 0 s reads to

p = p0 exp(γtv0/L) , (22a)
T = T0 exp((γ − 1)tv0/L) , (22b)
ρ = ρ0 exp(tv0/L) . (22c)

Thermodynamic variables do not vary in space (0D benchmark) allowing temporal convergence study
without any effect of spatial error (linear velocity).

For velocity boundary conditions, left and right boundaries have slip conditions, top has a Dirichlet
condition for injection vtop=[0,−v0]

T and bottom has a no-slip condition. For temperature boundary
conditions, all the boundaries have homogeneous Neumann conditions.

Table 1 presents the temporal convergence study. Temporal second-order is achieved for pressure,
density and temperature, for both L2 and L∞ norms. We do not present velocity errors in the table
because, whatever the time step, the exact velocity is reached as expected with errors close to the
resolution tolerance of linear systems (10−14). As the problem is 1D for velocity and 0D for the other
variables, conclusions do not change whatever be the mesh size form 82 to 1282. Let us note the
significant variations in relative pressure, temperature and density, final values at time tf = 1×10−1 s
being 3.0955×105 Pa, 4.4755×102 K and 3.1988 kgm−3, respectively.

5.2. Linear acoustic pulse propagation
The second test case investigates the isothermal problem of a linear acoustic wave propagation

considering an inviscid perfect gas (µ=0) with its EoS

∆p = c20∆ρ , (23)

where ∆p is the pressure perturbation, ∆ρ is the density perturbation, and c0=
√
γRT0 is the constant

speed of sound of the medium. This benchmark has been used in the past to test several novel
compressible solvers [9, 28, 29, 18, 26, 14], often to carry out temporal convergence studies. Besides its
simplicity and the existence of analytical solutions, this case allows a clear evaluation of the numerical
diffusion and dispersion of the proposed numerical schemes.
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We consider a monodimensional periodic domain of length L=1 m. For velocity boundary condi-
tions, left and right boundaries have periodic conditions while top and bottom have slip conditions.
At initial time, we consider the thermodynamic state (T0, p0, ρ0)=(300K, 105Pa, p0

RT0
) and a Gaussian

acoustic pressure wave defined as

p(x, t0) = p0 +∆p0 exp(−
x2

2Σ2
) , (24)

with ∆p0 the pulse amplitude and Σ a pulse length control parameter. The initial parameter of the
pulse is set to ∆p0=102 Pa and Σ=0.1 m like in [26]. The dimensionless parameters of the problem
are respectively Re0=∞ and Ma0=7.14×10−4.

From the resolution of the d’Alembert equation, analytical solutions are available for all fields. The
pressure, density and velocity solutions are respectively

p(x, t) = p0 +∆p0 exp

(
− (x− c0t)

2

2Σ2

)
, (25)

ρ(x, t) = ρ0 +
∆p0
c20

exp

(
− (x− c0t)

2

2Σ2

)
, (26)

u(x, t) =
∆p0
ρ0c20

exp

(
− (x− c0t)

2

2Σ2

)
. (27)

with c0t the distance travelled by the wave.
Figure 1a presents a graphical temporal convergence study of the relative pressure field at tf =

c0/L = 2.88×10−3 s (time travelled by the wave until it returns to its initial position) for various
acoustic Courant number, noted CFLac = c0∆t/∆x. The implicit treatment of pressure increment
avoids a stability limitation related to acoustic time step as we do not find any stability limit (still
stable at CFLac ∼ 4×103 data not shown). For very large CFLac and Euler backward temporal scheme,
the acoustic wave is totally diffused but, note that for CFLac=4.8 the wave is still well predicted. We
observe the relative low diffusivity of the first-order temporal scheme Euler backward at CFLac = 4
compared to literature results [26] (see CFLac=0.5 digitized curve from [26] in Fig. 1a).

Additionally, in Fig. 1b, it is noteworthy that the BDF2 scheme, with second-order temporal
accuracy, exhibits significantly lower numerical diffusion compared to the Euler scheme. This results
in a pressure profile that closely aligns with the exact solution at CFLac=2. An error of less than 1%
is observed compared to 20% with the Euler scheme. Using the BDF2 temporal scheme, the correct
observation of acoustic propagation is possible while considering CFLac greater than unity at the price
of increasingly dispersion of the travelling wave (see Fig. 1b for CFLac=8).

In Table 2, the temporal convergence study of this test case with the BDF2 scheme is presented
with a final time tf = L/cs = 2.88×10−3 s. Second-order temporal convergence is confirmed for
pressure, velocity, and density, for both L2 and L∞ norms. The PCMSF/IPCMSF comparison (data
not shown in Appendix D) gives again very close results for error magnitudes as well as second-order
temporal convergence for all the solved fields. No pressure accuracy limitation is found when using
the non-incremental method. We also present in Tab. 3 the spatial convergence study with a constant
CFLac = 1. Second-order spatial convergence is confirmed for all fields considering both L2 and L∞
norms.

5.3. Manufactured solutions
The technique known as the method of manufactured solutions involves the development of an a

priori known analytical solutions for the governing equations. The procedure introduces modifications
of the original equations (1) by adding source term on the right-hand side of equations (see Appendix
B). These source terms are considered as input, for reproducing the manufactured solution.

In literature, few manufactured solutions for compressible subsonic flows have been developed [53,
31, 32, 13] to validate algorithms. After a detailed analysis of the nature and properties of already
proposed solutions, we aim to define a generic, well posed, and reproducible manufactured solution
(see Appendix B). We thus propose the following two-dimensional compressible Navier–Stokes solution
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Figure 1: Acoustic pressure field variation at initial state t = 0 s (dashed line) and at tf = 2.88×10−3 s for various
CFLac =∆tc0/∆x (solid line colored by CFL value). IPCMSF with (a) Euler backward temporal scheme. (b) BDF2
temporal scheme. Mesh size 512x8.

∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order
1.60×10−4 4.568×10−2 n/a 9.698×10−2 n/a 1.842×101 n/a
8.00×10−5 2.304×10−2 0.987 5.057×10−2 0.939 9.293 0.987

4.00×10−5 7.871×10−3 1.550 1.846×10−2 1.454 3.176 1.549

2.00×10−5 1.986×10−3 1.987 4.873×10−3 1.922 8.017×10−1 1.986

1.00×10−5 3.272×10−4 2.601 7.510×10−4 2.698 1.321×10−1 2.601

∆t in s ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
1.60×10−4 3.911×101 n/a 1.528×10−4 n/a 3.245×10−4 n/a
8.00×10−5 2.039×101 0.940 7.710×10−5 0.987 1.692×10−4 0.940

4.00×10−5 7.451 1.452 2.635×10−5 1.549 6.182×10−5 1.452

2.00×10−5 1.968 1.920 6.651×10−6 1.986 1.633×10−5 1.920

1.00×10−5 3.036×10−1 2.697 1.096×10−6 2.601 2.519×10−6 2.697

Table 2: IPCMSF temporal order accuracy of the linear acoustic pulse test case. First time step ∆t=1.6×10−4 s equal
to CFLac=2.84×101. Mesh size 512×8, tf =2.88×10−3 s.
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Mesh ||εv||L2 order ||εv||L∞ order ||εp||L2 order
16x8 5.723×10−2 n/a 1.115×10−1 n/a 2.308×101 n/a
32x8 3.040×10−2 0.913 6.849×10−2 0.704 1.226×101 0.913

64x8 1.089×10−2 1.481 2.650×10−2 1.370 4.394 1.481

128x8 2.852×10−3 1.933 6.872×10−3 1.947 1.151 1.932

256x8 5.231×10−4 2.446 1.181×10−3 2.540 2.113×10−1 2.446

512x8 1.382×10−4 1.921 2.832×10−4 2.061 5.567×10−2 1.924

Mesh ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
16x8 4.378×101 n/a 1.915×10−4 n/a 3.632×10−4 n/a
32x8 2.804×101 0.643 1.017×10−4 0.913 2.326×10−4 0.643

64x8 1.067×101 1.394 3.645×10−5 1.481 8.853×10−5 1.394

128x8 2.768 1.947 9.550×10−6 1.932 2.296×10−5 1.947

256x8 4.768×10−1 2.537 1.753×10−6 2.446 3.955×10−6 2.537

512x8 1.140×10−1 2.064 4.619×10−7 1.924 9.457×10−7 2.064

Table 3: IPCMSF spatial order accuracy of the linear acoustic pulse test case. CFLac=1, tf =2.88×10−3 s.

for a perfect gas in a square domain Ω = [0, 1]× [0, 1] where the pressure p(x, y, t), the temperature
T (x, y, t), the density ρ(x, y, t) and the velocity u=(u, v)T read to

p = p0 + p1 sin(πy) sin(πx) cos(2πft) , (28a)
T = T0 + T1 sin(πy) cos(πx) cos(2πft) , (28b)
ρ = p

/
RT , (28c)

u = u0 sin
2(πx) sin(2πy) cos(2πft) , (28d)

v = u0 sin(2πx) sin
2(πy) cos(2πft) , (28e)

with f the frequency in Hz, p0 and p1 the reference and fluctuation pressure in Pa, T0 and T1 the
reference and fluctuation temperature K, u0 the reference velocity in ms−1 and R the universal gas
constant in JK−1 kg−1. The perfect gas EoS permits the verification of the solver with time- and space-
dependent material properties, except for dynamic viscosity and conductivity considered as constant
here.

The proposed solution is derived from the manufactured solution initially proposed for incompress-
ible flows [23]. One notices good properties of the solution to simulate a subsonic flow with incremental
pressure correction method as the non-zero pressure gradient at boundary or the non-zero divergence
field. Time-dependent Dirichlet boundary conditions are applied for temperature fields. For velocity
boundary conditions, all the boundaries have no-slip conditions while Neumann homogeneous bound-
ary condition is imposed on pressure increment.

To investigate the accuracy of the resolved fields and different ranges of dimensionless parameters,
three specific manufactured solutions are introduced in the following three subsections by tuning pa-
rameters. It is helpful to test the proposed method on low Mach solution as encountered in compressible
natural flows (e.g. Ma0 ' 1×10−3), as well as on solution with much larger Mach (e.g. Ma0 ' 0.6),
The following parameters will remain constant for all three cases : f=700 Hz, p0=105 Pa, p1=2×103

Pa, T0=300K, R=287 JK−1 kg−1, γ=1.4. µ=1.85×10−5 Pa s. All the convergence studies consider
the final time tf =2×10−3 s corresponding to more than one and a half times the period T =1/f .

5.3.1. Isothermal high Mach subsonic manufactured solution
The isothermal flow case considers the following parameters T1=0 K, u0=200 m s−1. We present

this unsteady flow solution for whoever wants to analyse the temporal order without considering the
coupling of the Navier–Stokes equations and the energy equation. The dimensionless parameters of
this case are Re0=1.26×107, Ma0=5.76×10−1.

Table 4 presents the temporal convergence study. Second-order convergence in time is achieved for
velocity, pressure, and density, considering both the L2 and L∞ norms.
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∆t in s ||εv||L2
order ||εv||L∞ order ||εp||L2

order
2.00×10−4 3.932×101 n/a 6.442×101 n/a 5.853×103 n/a
1.00×10−4 1.497×101 1.393 2.570×101 1.326 1.861×103 1.653

5.00×10−5 4.289 1.803 7.931 1.696 5.325×102 1.805

2.50×10−5 1.120 1.938 2.116 1.906 1.402×102 1.925

1.25×10−5 2.882×10−1 1.958 5.489×10−1 1.947 3.594×101 1.964

6.25×10−6 7.739×10−2 1.897 1.479×10−1 1.892 9.641 1.898

∆t in s ||εp||L∞ order ||ερ||L2
order ||ερ||L∞ order

2.00×10−4 1.467×104 n/a 6.798×10−2 n/a 1.704×10−1 n/a
1.00×10−4 4.935×103 1.572 2.161×10−2 1.653 5.731×10−2 1.572

5.00×10−5 1.625×103 1.602 6.185×10−3 1.805 1.887×10−2 1.602

2.50×10−5 4.387×102 1.889 1.629×10−3 1.925 5.095×10−3 1.889

1.25×10−5 1.131×102 1.956 4.175×10−4 1.964 1.313×10−3 1.956

6.25×10−6 3.006×101 1.911 1.120×10−4 1.898 3.492×10−4 1.911

Table 4: IPCMSF temporal order accuracy of the isothermal high Mach manufactured solution. First time step ∆t=
2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.

5.3.2. Anisothermal high Mach subsonic manufactured solution
A fully compressible subsonic case is now studied considering the following parameters T1=40 K,

u0=200 m s−1, λ=10−2Wm−1 K−1. We investigate temporal order of convergence on a test case with
the following dimensionless parameters: Re0=1.26×107, Ma0=5.76×10−1 and Pr0=1.86.

Firstly, we present in Fig 2 the variations of the primitive variables of the proposed anisothermal
manufactured solution. Fig 2a,b,c,d show respectively pressure, temperature, divergence and velocity
fields while Fig 2e,f present respectively the local variations of Mach and Reynolds numbers. One may
notice strong divergence variations (see Fig 2c) and a maximal local Mach number at t=0 s of 0.6 (see
Fig 2e), twice the incompressible limit.

We present in Table 5 the temporal convergence study of the case. The proposed method reaches
the temporal second-order for all the resolved fields, for both L2 and L∞ norms. We also present
in Tab. 6 the spatial convergence study with a constant acoustic Courant number of CFLac = 1 for
each simulation necessary to attenuate the temporal error. Second-order spatial convergence is also
confirmed for all fields considering both L2 and L∞ norms.

5.3.3. Anisothermal low Mach subsonic manufactured solution
A low Mach fully compressible subsonic case in now studied considering the following parameters

T1=40 K, u0=2 ms−1, λ=10−2 Wm−1 K−1. We investigate temporal order of convergence on a test
case with the following dimensionless parameters: Re0=1.26×105, Ma0=5.76×10−3 and Pr0=1.86,

We present in Table 7 the temporal convergence study of the case. The method reaches the temporal
second-order for all the resolved fields, for both L2 and L∞ norms.

5.4. Comparison between non-incremental and incremental pressure correction method for subsonic
compressible flows

For all the verification test cases presented in the present work, we find almost the same behaviour
whether solving the pressure p (PCMSF) or the pressure increment ϕ (IPCMSF) (see Appendix D).

We note that even in the presented manufactured solution problems, specifically designed to chal-
lenge the methods by introducing discrepancies at the domain boundaries (where the methods enforce
homogeneous Neumann while the solution does not), no difference in both temporal order convergences
and error magnitudes are observed between IPCMSF and PCMSF for all the resolved fields (see Table
D.17, D.16 and D.18).

The classical pressure accuracy limitations of the non-incremental projection method observed in
incompressible flows is not present for subsonic compressible flows, as confirmed by our comparison
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Figure 2: Visualisation of the high Mach anisothermal solution within the square domain Ω=[0, 1]×[0, 1] at t=0 s. (a)
Relative pressure field ∆p= p − p0. (b) Temperature field T . (c) Divergence of the velocity field ∇ · u. (d) Velocity
vector field u (arrows) and its magnitude ||u||. (e) Local Mach number Ma. (f) Local Reynolds number Re.
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∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.753×101 n/a 7.456×101 n/a 6.230×103 n/a 1.975×104 n/a
1.00×10−4 1.366×101 1.458 2.493×101 1.581 1.885×103 1.724 5.279×103 1.904

5.00×10−5 3.874 1.818 6.912 1.851 5.200×102 1.858 1.548×103 1.770

2.50×10−5 1.012 1.936 1.843 1.907 1.352×102 1.944 4.014×102 1.947

1.25×10−5 2.599×10−1 1.961 4.825×10−1 1.934 3.437×101 1.975 1.054×102 1.929

6.25×10−6 6.908×10−2 1.912 1.317×10−1 1.873 9.054 1.925 2.831×101 1.897

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 7.616 n/a 3.153×101 n/a 5.457×10−2 n/a 1.978×10−1 n/a
1.00×10−4 2.519 1.596 8.642 1.867 1.711×10−2 1.673 4.450×10−2 2.152

5.00×10−5 6.835×10−1 1.882 2.403 1.847 4.728×10−3 1.856 1.385×10−2 1.684

2.50×10−5 1.767×10−1 1.952 6.303×10−1 1.931 1.234×10−3 1.938 4.005×10−3 1.790

1.25×10−5 4.528×10−2 1.964 1.616×10−1 1.964 3.158×10−4 1.966 1.065×10−3 1.911

6.25×10−6 1.222×10−2 1.890 4.285×10−2 1.915 8.401×10−5 1.910 2.865×10−4 1.894

Table 5: IPCMSF temporal order accuracy of the anisothermal high Mach subsonic manufactured solution. First time
step ∆t=2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.

Mesh ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
64x64 3.055 n/a 5.712 n/a 3.811×102 n/a 1.125×103 n/a
128x128 8.000×10−1 1.933 1.517 1.913 9.913×101 1.943 3.041×102 1.888

256x256 2.022×10−1 1.984 3.911×10−1 1.956 2.494×101 1.991 7.787×101 1.965

512x512 5.094×10−2 1.989 9.963×10−2 1.973 6.254 1.995 2.035×101 1.936

Mesh ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
64x64 5.259×10−1 n/a 1.835 n/a 3.572×10−3 n/a 1.088×10−2 n/a
128x128 1.348×10−1 1.963 4.789×10−1 1.938 9.270×10−4 1.946 3.054×10−3 1.833

256x256 3.394×10−2 1.990 1.216×10−1 1.978 2.338×10−4 1.987 8.115×10−4 1.912

512x512 8.539×10−3 1.991 3.841×10−2 1.662 5.892×10−5 1.988 2.805×10−4 1.533

Table 6: IPCMSF spatial order accuracy of the anisothermal high Mach subsonic manufactured solution. CFLac=1 and
tf =2×10−3 s.

∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.731×10−1 n/a 8.833×10−1 n/a 2.155×102 n/a 4.504×102 n/a
1.00×10−4 1.391×10−1 1.423 3.183×10−1 1.473 6.530×101 1.723 1.550×102 1.539

5.00×10−5 4.110×10−2 1.759 9.129×10−2 1.802 1.830×101 1.835 5.251×101 1.562

2.50×10−5 1.100×10−2 1.902 2.372×10−2 1.945 4.732 1.952 1.428×101 1.879

1.25×10−5 2.825×10−3 1.961 6.062×10−3 1.968 1.192 1.989 3.631 1.976

6.25×10−6 7.200×10−4 1.972 1.530×10−3 1.986 2.997×10−1 1.992 9.187×10−1 1.983

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 4.166 n/a 1.349×101 n/a 1.857×10−2 n/a 6.571×10−2 n/a
1.00×10−4 8.746×10−1 2.252 2.499 2.432 3.712×10−3 2.323 1.190×10−2 2.465

5.00×10−5 1.903×10−1 2.201 4.336×10−1 2.527 7.821×10−4 2.247 2.100×10−3 2.503

2.50×10−5 4.570×10−2 2.058 1.172×10−1 1.888 1.819×10−4 2.104 5.127×10−4 2.034

1.25×10−5 1.140×10−2 2.003 3.193×10−2 1.875 4.441×10−5 2.034 1.371×10−4 1.903

6.25×10−6 2.861×10−3 1.994 8.320×10−3 1.940 1.102×10−5 2.010 3.541×10−5 1.953

Table 7: IPCMSF temporal order accuracy of the anisothermal low Mach manufactured solution. First time step
∆t=2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.
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between non-incremental and incremental methods. These comparable results between the two meth-
ods stem from the nature of pressure, which in compressible flows is governed by time-dependent
equations (2) or (20).

6. Validation

Validation is the process that assesses the extent to which a numerical model accurately represents
a physical phenomenon for the purpose of utilizing the results. It entails comparing precise numerical
solutions with experimental (or theoretical) results. It’s important to note that validation doesn’t
assume the experimental measurements are inherently more accurate than the numerical solutions;
rather, it considers them as the most adequate means available for representing the reality in the context
of validation. Benchmarking the numerical solutions obtained with different codes is also a crucial
component of the validation process. In this context, the inherent variability of the numerical methods,
together with extensive convergence studies, allow to consider the reference numerical solutions as
equivalent to experimental measurements.

The validation section is structured around both stationary and unsteady test cases. Initially,
the proposed method is validated on a well-known low Mach compressible steady natural convection
benchmark, encompassing cases with constant and variable viscosity. Following that, validation is
extended to a natural convection test case in the presence of an immersed boundary. In the second
part, validation is conducted on two unsteady 1D thermoacoustic wave generation and propagation
scenarios. The first involves a Dirichlet boundary condition and a perfect gas, while the second
incorporates a heat flux and operates very close to the liquid-vapor critical point. Finally, validation
is carried out on a 2D unsteady natural convection case at a Mach number of 0.1. All the benchmarks
presented consider a regime beyond the Boussinesq approximation, commonly referred to as the non-
Oberbeck–Boussinesq (NOB) approximation.

6.1. Compressible steady natural convection benchmark
Compressible flows can occur due to large temperature variations resulting in large density changes

for which the Boussinesq approximation is no longer valid. In this section, we validate the proposed
method by reproducing the classical case T1 and case T2 steady-state benchmarks of Le Quéré et al.
[10]. From the nomenclature [10], case T1 refers to constant viscosity and conductivity while the case
T2 considers Sutherland’s law for viscosity and conductivity (see Appendix C for parameters values).

We consider a differentially heated square cavity subject to gravitational field |g|=9.81m s−2, filled
with air considered as a perfect gas, with the following initial dimensionless parameters: temperature
ratio ε= Thot−Tcold

Thot+Tcold
=0.6, Rayleigh number Ra0=Pr0

g∆TL3βp0ρ
2
0

µ2
0

=106, Prandtl number Pr0=7.1×10−1.
Initial Mach number (considering the characteristic velocity u0=

λ0

ρ0cpL

√
Ra0 [54]) are Ma0=1.78×10−3

for case T1 and Ma0=2.15×10−3 for case T2, respectively. Due to difference between initial viscosity
and conductivity in both cases, the lengths L of the cavities are LT1=4.60×10−2 m LT2=6.71×10−2

m. The cavity lengths of natural convectioin problmes provided in the article are indicative and
must be calculated accurately based on the initial thermophysical state and the value of the Rayleigh
number.

The boundary conditions of both cases are as follows. For temperature, the top and bottom walls
have adiabatic conditions and left and right are respectively heated and cooled Thot = 960 K and
Tcold = 240 K. For velocity boundary conditions, all the boundaries have no-slip conditions. Both
cases have been simulated considering an adaptative time step driven by a constant CFLac =4×102.
The implicit treatment of the pressure computation permits to consider large CFL number which
amounts to naturally filtering acoustic waves.

The objective of the present validation is to compare the reference values [10] of the spatial aver-
age side walls Nusselt numbers Nuleft,right and cavity pressure at steady state with our simulations.
Regarding the previous final time proposed [26], we propose a final time tf = 20 s ensuring the flow
reaches a steady state.

Figure 3a,b presents respectively the pseudocolor plot of the temperature field along with the
velocity vectors field of the case T1 and the temperature profile comparison at y=L/2 between T1 and
T2 cases. Simulation results of the T2 case [55, 56] are also plotted in Fig. 3b. The simulation of case T2
with our full compressible modelling well reproduces the temperature profile solution [55, 56] while most
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Figure 3: (a) Pseudocolor plot of temperature field and velocity vectors field of the case T1 [10]. (b) Horizontal
dimensionless temperature profile T (x, y=L/2)/T0 comparison between T1 (circle symbols) and T2 (solid line) cases.
Vierendeels et al. [55] case T2 simulation (circle symbols), Kuan and Szmelter [56] case T2 simulation (rectangle
symbols). Simulation results of case T2 [55, 56] are also plotted in Fig. 3b. CFLac=400, mesh size 10242, tf =20 s.

of the benchmark contributions were obtained considering the low Mach number approximation [10, 56].
To the author’s knowledge, temperature profile solution of the case T1 is unavailable in the literature.
We plot in Fig. 3b this horizontal temperature profile and we validate this case in the following
regarding Nusselt number and maximal pressure. Regarding the lack of temperature profile data and
as this configuration is simpler than T2, this approach is acceptable.

We propose in Table 8 a spatial convergence study of case T1 for regular meshes at CFLac=400
including Richardson extrapolated values. We observe a spatial second-order convergence on Nusselt
numbers, spatially averaged relative pressure, temperature, and velocity magnitude.

Reference values of T1 are Nu= 8.859 78 and pmax/p0 = 0.856 338 [10]. On the mesh size 10242,
we found a maximal normalized pressure of pmax/p0 = 0.855 486 and an absolute difference between
left and right Nusselt number of NuL − NuR = 9.48×10−5 (see Table 8). By carefully reading the
list of pitfalls and recommendations proposed by the authors of the benchmark [10], we thus verified
the equality (at three significant digits) of both left and right averaged Nusselt number According to
reference values [10], the absolute relative differences are respectively 9.95×10−2 % for the maximal
pressure and 3.76×10−2 % for the Nusselt number (left value chosen).

Table 9 shows the spatial convergence study of case T2 for regular meshes at CFLac=400 also with
Richardson extrapolated values. Here, spatial second-order is observed on spatial averaged relative
pressure, temperature and velocity, and varying between 1.64 and 1.85 for left and right Nusselt
numbers, respectively. Reference values of this case are Nu = 8.6866 and pmax/p0 = 0.924 487 [10]. On
the mesh size 10242, we found a maximal normalized pressure of pmax/p0=0.923 744 and an absolute
difference between left and right Nusselt number of 1.4×10−4 (see Table 9). According to reference
values [10], the absolute relative differences are respectively 8.03×10−2 % for the maximal pressure
and 9.01×10−3 % for the Nusselt number (left value chosen).

To complement the usual data provided for this benchmark, we propose in Fig. 4a the local Mach
number at steady state of the case T1 computed as Ma=

√
u2 + v2/

√
γRT . We observe the maximal

Mach number values in the both sidewall boundary layers of Mamax=4.5×10−4. We do not find back
the Ma0 assumed by the characteristic velocity coming from the current dimensional analysis [54].
The current range of local Mach is one order of magnitude below the expected value, i.e. Ma0 =
1.78×10−3. The characteristic velocity overestimates the true characteristic velocity, whether it is
calculated [57, 54, 58]. This remark is valid also for the other natural convection benchmarks proposed
(Section 6.3.3 and Section 6.2). To emphasize the compressibility of the flow and in addition to the local
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Mesh Nuleft order Nuright order ∆p in Pa order
64x64 9.0509 n/a 9.0811 n/a −1.7907×104 n/a
128x128 8.9110 n/a 8.9184 n/a −1.5438×104 n/a
256x256 8.8711 1.810 8.8728 1.834 −1.4809×104 1.971

512x512 8.8598 1.821 8.8602 1.864 −1.4669×104 2.170

1024x1024 8.8564 1.741 8.8565 1.770 −1.4643×104 2.452

Extrapolation 8.8550 n/a 8.8550 n/a −1.4637×104 n/a

Mesh |u| in ms−1 order T in K order
64x64 4.9700×10−2 n/a 5.6453×102 n/a
128x128 4.8601×10−2 n/a 5.6823×102 n/a
256x256 4.8313×10−2 1.929 5.6930×102 1.791

512x512 4.8245×10−2 2.077 5.6957×102 1.967

1024x1024 4.8230×10−2 2.183 5.6964×102 1.995

Extrapolation 4.8225×10−2 n/a 5.6966×102 n/a

Table 8: Spatial order accuracy of the compressible natural convection case T1 [10] for spatially averaged Nusselt
numbers, relative pressure, velocity magnitude and temperature. CFLac = 400, tf = 20 s. Extrapolated Richardson’s
values are also given.

Mesh Nuleft order Nuright order ∆p in Pa order
64x64 9.0067 n/a 9.0350 n/a −1.1448×104 n/a
128x128 8.7767 n/a 8.7881 n/a −8.9730×103 n/a
256x256 8.7129 1.852 8.7155 1.765 −8.0069×103 1.357

512x512 8.6924 1.634 8.6930 1.689 −7.7715×103 2.037

1024x1024 8.6858 1.644 8.6860 1.682 −7.7269×103 2.401

Extrapolation 8.6827 n/a 8.6828 n/a −7.7164×103 n/a

Mesh |u| in ms−1 order T in K order
64x64 5.6898×10−2 n/a 5.9958×102 n/a
128x128 5.6037×10−2 n/a 6.0538×102 n/a
256x256 5.5683×10−2 1.285 6.0746×102 1.478

512x512 5.5585×10−2 1.848 6.0808×102 1.740

1024x1024 5.5562×10−2 2.059 6.0825×102 1.847

Extrapolation 5.5554×10−2 n/a 6.0832×102 n/a

Table 9: Spatial order accuracy of the compressible natural convection case T2 [10] for spatially averaged Nusselt
numbers, relative pressure, velocity magnitude and temperature. CFLac = 400, tf = 20 s. Extrapolated Richardson’s
values are also given.
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Mach number of case T1, we report the maximum and minimum values of the steady-state velocity
divergence (∇ · v)max=12.97 s−1 (left bottom of the cavity) and (∇ · v)min=−9.57 s−1 (top right of
the cavity). For case T2 we found at same locations (∇ ·v)max=11.61 s−1 and (∇ ·v)min=−6.80 s−1.

6.2. Immersed boundary compressible steady natural convection benchmark
Natural convection in a cavity induced by an immersed heating body is considered in this section.

The steady case from Bouafia and Daube [57] is considered with the following dimensionless parameters
Ra0 =5×106, Re0 =2.65×103, Ma0 =1.53×10−3, Pr0 =7.1×10−1, ε=0.2 with the reference velocity
computed as V0=

µ0

ρ0L

√
Ra0 [57]. The fluid filling the square cavity of length L=7.15×10−2 m is air

with temperature-dependent viscosity and conductivity following Sutherland’s law (see Appendix C
for parameters values). We refer the reader to the original paper for the geometrical configuration [57].
We propose for our simulations a constant CFLac =600 and a final time tf =30 s which verifies the
steady state residuals of our simulations. A spatial first-order volume-penalty method is used [40] (see
Section 3.4).

For temperature, the top and bottom walls have adiabatic conditions, left and right boundaries are
cooled and the immersed boundary is heated (Thot=360 K and Tcold=240 K). For velocity boundary
conditions, no slip conditions are considered.

Figure 5 present at steady state in (a) the comparison of dimensionless velocity and temperature
horizontal profiles and in (b) the pseudocolor plot of temperature field and velocity vectors field.
The characteristic flow described by Bouafia and Daube [57], under a low Mach numerical method,
is well found back by our simulations with the two counter-rotating recirculation zones cut off by a
central plume induced by the heated immersed boundary (see Figure 5b). More importantly, the flow
symmetry along the central vertical axis at this Rayleigh number is observed in Fig 5a,b and in Fig 4c.
A discrepancy is visible for both velocity and temperature horizontal profiles (Figure 5a) between the
literature data [57] and our simulation on the mesh 10242. We report that our 10242 mesh achieves
spatial convergence (see Table 10) and we note that Bouafia’s data closely align with our 5122 mesh
(data not shown).

We present the local Mach number at steady state in Fig. 4b. The maximum Mach number
(Mamax =5.3×10−4) are located in the area of the central vertical thermal plume. As noted in Sec-
tion 6.1, the range of local Mach is one order of magnitude below the expected value, i.e. Ma0=1.53×10−3.
In addition to the local Mach number and to give another measure of the compressibility of the flow,
we report the maximum and minimum values of the velocity divergence at steady state, (∇ · v)max=
17.27 s−1 and (∇ · v)min = −15.07 s−1, located at the two upper corners of the heated immersed
boundary.

As expected due to the immersed boundary method used, first convergence order is observed (Ta-
ble 10) on spatially averaged Nusselt numbers, relative pressure, velocity, and temperature. Richard-
son extrapolated values are also provided in the table. To the author’s knowledge, Nusselt numbers
of this benchmark have never been reported, both on the side walls (Table 10), but also on the hot
Immersed Boundary (IB), i.e. NuIBtop = 1.1680×101, NuIBbottom = 3.0022×101, NuIBleft = 3.1638×101,
NuIBright =3.1638×101 on the finest grid. For all Nusselt computations, we consider the length of the
cavity as the characteristic length. The high Nusselt numbers of left, right, and bottom IB express
the very thin thermal boundary layer observed compared to the top IB thermal boundary layer (see
Fig 5b). Absolute difference between left and right Nusselt number for the entire cavity and for the
immersed boundary are respectively 1.92×10−11 and 4.28×10−11.

6.3. Unsteady test cases
6.3.1. Thermoacoustic wave propagation in a perfect gas

The generation and propagation of thermoacoustic wave is the subject of the present test case
introduced by Huang and Bau [59] and later studied by Farouk et al. [60]. A nitrogen-filled one-
dimensional cavity of length L=1mm is at the initial state (T0, p0, ρ0)=(300K, 101325Pa, p0

RT0
), where

the gas is considered to be a perfect gas. The viscosity and conductivity of the fluid are temperature
dependent (see Appendix C for parameters values). The validation of this test case is carried out by
the comparison of our pressure wave profile at time t = 0.25t0 = 7.08×10−7 s against reported data
from simulations of the original paper [59] and from Farouk et al. [60]. The dimensionless parameters
are respectively Ma0=6.0×10−2 (computed from velocity max peak at t=0.25t0 and the initial speed
of sound c0=

√
γRT0) and Pr0=0.75.
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Figure 4: Local Mach number variations. (a) Steady compressible case T1 benchmark [10]. Mesh size 10242, CFLac=
400, tf =20 s. (a) Steady immersed boundary compressible benchmark [57]. Mesh size 10242, CFLac =600, tf =30 s.
(c) Time averaged Mach of the unsteady compressible benchmark [58]. CFLac = 2.5×103, Chebyshev mesh size 2562,
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Mesh Nuleft order Nuright order ∆p in Pa order
64x64 6.1463 n/a 6.1463 n/a −1.3629×104 n/a
128x128 6.4141 n/a 6.4141 n/a −1.0808×104 n/a
256x256 6.5437 1.046 6.5437 1.046 −9.9439×103 1.706

512x512 6.6131 0.902 6.6131 0.902 −9.5649×103 1.190

1024x1024 6.6496 0.927 6.6496 0.927 −9.3757×103 1.003

Extrapolation 6.6901 n/a 6.6901 n/a −9.1873×103 n/a

Mesh |u| in ms−1 order T in K order
64x64 3.7092×10−2 n/a 2.6967×102 n/a
128x128 3.7341×10−2 n/a 2.7219×102 n/a
256x256 3.7501×10−2 0.633 2.7321×102 1.291

512x512 3.7575×10−2 1.120 2.7366×102 1.197

1024x1024 3.7609×10−2 1.099 2.7387×102 1.088

Extrapolation 3.7640×10−2 n/a 2.7406×102 n/a

Table 10: Spatial order accuracy of the immersed boundary compressible natural convection [57] for spatially averaged
Nusselt numbers, relative pressure, velocity magnitude and temperature. CFLac=600, tf =30 s. Extrapolated Richard-
son’s values are also given.
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Figure 6: Comparison of dimensionless relative pressure wave at t = 0.25t0 = 7.08×10−7 s. IPCMSF with BDF2
temporal scheme (solid line), simulation from Huang and Bau [59] (empty circle symbols), simulation from Farouk et al.
[60] (empty triangle symbols). Mesh size 32768×8 and CFLac=0.1.

For velocity boundary conditions, left and right boundaries have no-slip conditions while top and
bottom boundaries have slip conditions. For temperature boundary conditions, top and bottom have
homogeneous Neumann conditions, right and left have respectively Dirichlet condition with TR = T0

and TL(t>0)=2T0.
Figure 6 presents the thermoacoustic wave shape within the cavity at t= 0.25t0 by plotting the

dimensionless relative pressure along space for our simulation and literature data. This flow is char-
acterized by the propagation of a pressure wave with a sharp front and an increasing peak width over
time [59, 60]. Because of the strong heating on the left of the cavity and the ideal gas hypothesis,
the wave speed is variable and its correct prediction is mandatory. An inconsistency between the two
references about the wavefront and the speed of the wave can be seen in Fig. 6. The proposed solution
(mesh size 32768×8 and CFLac=0.1), resulting from a spatial and temporal comparative study, can
be seen as a reference solution. It is possible to validate the propagation speed of the Huang and Bau
[59] wave by comparison with our data. The present benchmark permits to validate our method to
simulate thermoacoustic wave propagation. In the next test case, we investigate the same phenomenon
very close to the liquid-vapor critical point (where fluid compressibility is very high) with a very low
amplitude and sharp thermoacoustic wave propagation.
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Figure 7: Comparison of normalized density variation between the experimental data at ∆T =150mK from the critical
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with Euler backward temporal scheme (solid line) for a mesh size 1024×8 and CFLac=1, Amiroudine et al. [38] simulation
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6.3.2. Thermoacoustic wave propagation close to the liquid-vapor critical point
Miura et al. [61] firstly study experimentally supercritical carbon dioxide acoustic wave propagation

using a very sensitive interferometer to capture the piston effect within a cavity of length L=1.08 cm.
The reproduction of Miura et al. [61] experimental data has been the cornerstone for validation of a
CFD code with applications in supercritical fluid dynamics [38, 62, 63]. On the critical isochore and
very close to the critical point (Tc=304.13 K, ρc=467.6 kgm−3, pc=73.77 bar), the authors reported
the normalized variation of density (ρ−ρ0)

ρ0
×107 along a period of time tf =0.4 ms when the left cavity

is heated by a constant heat flux ΦL during 0.2 ms. After this period, adiabatic condition is imposed
to the left wall.

A simulation using initial and boundary conditions closely approximating those of the experimental
setup has been conducted within a one-dimensional domain. For the temperature boundary, we impose
on the left wall a constant heat flux ΦL=1.83 kWm−2 during the first 0.2 ms and adiabatic condition
to the right wall and left wall after t > 0.2 ms. For the velocity boundary, we impose slip condition
to all boundaries. The NIST refprop library [64] has been used to compute the density and all the
thermophysical properties of the fluid.

According to the experiment and the simulations (see Fig. 7, 8), the wave propagates continuously
between the left and right walls. This leads to an increase in bulk temperature and, consequently, an
increase in density. The present test case is highly challenging given the very low variations in density
(approximately 1×10−7) and the sharp shape of the travelling wave.

Figure 7 presents the normalized density variation at the cell centre as a function of time of the
T0−Tc=150 mK experiment of Miura et al. [61]. The results with first-order Euler backward are found
to be in good agreement with experimental results, as well as other numerical solutions, validating the
proposed method for flows very close to the critical point. Let us note that we simulated this test case
with BDF2 temporal scheme at CFLac=1 but, because of the dispersivity of the scheme (see Fig. 1b)
and the sharp shape of the wave, the travelling wave is reconstructed with oscillations.

In addition to the density variations and for the sake of reproducibility, Figure 8 shows the nor-
malized variations of temperature and pressure at the centre of the cell. As we compute density solely
from the NIST refprop database and given our satisfactory result on the density wave propagation,
we deduce that pressure and temperature fields have been very well resolved.

6.3.3. Compressible unsteady natural convection benchmark
The last challenging benchmark addressed by IPCMSF is a recently proposed unsteady differentially

heated cavity with large temperature variations problem [58]. A two-dimensional square cavity of
length L= 2.05×102 m is filled with a perfect gas, where viscosity and conductivity vary according

24



0 0.1 0.2 0.3 0.4

0

0.5

1

t in (ms)

∆
T
/
T
0
1
0
7

in
(-

)

0

2

4

6

8

∆
p
/
p
0
1
0
7

in
(-

)

T/T0

∆p/p0

Figure 8: Thermodynamic variations at the cell center during the experiment of Miura et al. [61] at ∆T = 150 mK
from the critical point. Right y-axis: Normalized relative pressure (dashed line with symbols). Left y-axis: Normalized
temperature (solid line). IPCMSF with Euler backward temporal scheme (solid line) for a mesh size 1024×8 and
CFLac=1,

to Sutherland’s law (see Appendix C for parameters values). The dimensionless parameters of the
reproduced benchmark are Ra0=1.83×108, Re0=1.61×104, Ma0=1×10−1 (considering the reference
velocity u0 =

√
2εLg [58]), Pr0 = 7.1×10−1, ε = 0.6. One can observe significantly larger Mach

number compared to the Le Quéré et al. [10] benchmark (see Section 6.1), providing an interesting
complementary validation test case for subsonic compressible methods.

Boundary conditions are identical as in Section 6.1. Various strategies exist to avoid the stiff
initialization of an abrupt heating of vertical walls that may lead to the divergence of the simulation.
Unlike Farouk et al. [60] which impose time-dependent Dirichlet boundary conditions for temperature
(TL(t) and TR(t)), we propose a geometric time step progression ∆tn+1 = 1.2∆tn from initial state,
with a first time step ∆t0 = 10−6 s, until we reach the CFLac driven time step. We report no differences
induced by both strategies (time-dependent boundary conditions or geometric time step progression)
in the periodically established flow solution.

For ease of reproducibility, we provide the starting time for our statistical analysis ts/teddy = 40
along with the final time of the simulation tf/teddy = 100. The timescale is computed as teddy =
4L/(3u0) [58]. As performed by Wen et al. [58], we obtained a periodically established flow at this
final time with relevant statistics of the resolved fields.

Unlike the Le Quéré et al. [10] cases in Section 6.1, comparative results on regular and Chebychev
mesh grids point out the necessity of Chebyshev grid refinement to well capture the very thin boundary
layer of the case (see Figure 9a,b). We thus present results of the 2562 Chebyshev mesh with an
adaptative time step driven by an acoustic CFLac = 2.5×103. A spatial convergence study in shown in
Table 11 for various Chebyshev mesh sizes. We report that our presented simulation of 2562 Chebyshev
grid achieves spatial convergence for the presented metrics. The computed minimal Kolmogorov scale
reaches the value of 2.58×10−1 m and its located within the boundary layer of the right bottom corner
(cold wall boundary) as found by Wen et al. [58]. (below the smallest mesh size of 7.77×10−3 m).
Throughout the domain, we always observe a local Kolmogorov scale larger than the local mesh size,
indicating that we accurately capture the flow dynamics.

Figure 9a show the pseudocolor plot of the time averaged temperature , noted 〈T 〉, and the velocity
vector field at final time. In addition of the global overview of this natural convection benchmark and
in order to provide reproducible data, we propose in Fig 9b three horizontal time averaged temperature
profiles at final time along the vertical axis at y=0.05L, y=0.5L, y=0.85L, respectively.

Figure 9c,d show the time evolution of the instantaneous dimensionless temperature and velocity
along the last five cycle. The localization of the probes are for the temperature and velocity at
(x= 0.85L, y= 0.05L) and (x= 0.95L, y= 0.05L), respectively. As found by Wen et al. [58], we find
back two periodic signals of period T = 1.85teddy. Although we use a different numerical method,
we observe an instantaneous temperature periodic temporal curve in good agreement with existing
result [58]. Regarding the temporal evolution of instantaneous x-velocity (see Fig 9c), our temporal
evolution during the period is relatively different from that reported although overall we find similar
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Mesh 〈Nuleft〉 order 〈Nuleft〉 order ∆p in Pa order
128x128 3.5051×101 n/a 3.4882×101 n/a −6.3892×103 n/a
256x256 3.4798×101 n/a 3.4726×101 n/a −7.6752×103 n/a
512x512 3.4739×101 2.083 3.4689×101 2.064 −7.9609×103 2.171

Extrapolation 3.4720×101 n/a 3.4677×101 n/a −8.0425×103 n/a

Mesh T in K order Min Kolmogorov scale in m order
128x128 6.0788×102 n/a 2.7653×10−1 n/a
256x256 6.0886×102 n/a 2.6094×10−1 n/a
512x512 6.0913×102 1.911 2.5784×10−1 2.328

Extrapolation 6.0922×102 n/a/ 2.5707×10−1 n/a

Table 11: Spatial mesh convergence study of the unsteady compressible natural convection [58]. Time averaged left and
right spatially averaged Nusselt values, spatially averaged relative pressure and temperature and the minimal Kolmogorov
scale are presented. Chebyshev grid with CFLac = 2.5×103 and tf = 100teddy s. Extrapolated Richardson’s values are
also given.

behaviour. One possible reason is that we are not comparing the temporal evolution of velocity at the
exact same position within the cavity. In order to remove possible ambiguity on the location of the
probes, we have marked them in Fig 9a.

We present the local time averaged Mach number at tf =5.0051×103 s in Fig. 4c. The maximum
Mach number (Mamax = 3×10−2) are located in the both very thin sidewall boundary layers as in
Section 6.1. The range of local time averaged Mach is one order of magnitude below the expected value.
Wen et al. [58] also document this discrepancy in the Mach order of magnitude on the Ra=5×109

case by plotting contour plot of local Mach number. In addition to the local Mach number, we
report the maximum and minimum values of the instantaneous velocity divergence at final time,
(∇ · v)max=0.62 s−1 (left bottom of the cavity) and (∇ · v)min=−0.30 s−1 (right top of the cavity).

From data given by Wen et al. [58], the validation of this test case is achieved by the comparison
of (a) the dimensionless temperature and velocity fluctuations spectrums, (b) the left and right time-
averaged Nusselt number.

We present in Figure 9e,f the dimensionless Power Density Spectrum (PDS) of the dimensionless
velocity and temperature fluctuations fields. The reported dimensionless PDS of a field x is com-
puted as PDSx = |DFTx|2/t2eddy with DFT the Discret Fourier Transform (DFT) of x. For both
x-velocity and temperature fluctuations, we found the first four dimensionless frequencies f · teddy =
(5.4×10−1, 1.0, 1.6, 2.2)T . Computed frequencies are consistent with reported values [58], e.g. the first
frequency is for both studies f1teddy'0.5.

The time averaged left and right Nusselts numbers computed on the last five cycles are respectively
Nuleft = 34.82, Nuright = 34.75. Our Nusselt numbers are consistent with the left reported value [58]
Nuleft = 34.2718. These given Nusselt number values are different from those in the Table 11 as
〈Nuleft,right〉 come from the averaging process from ts until tf . The absolute difference between left
and right averaged Nusselt over the last five cycles is 7.46×10−2.

7. Rayleigh–Bénard Direct Numerical Simulation of a supercritical fluid

We finally present an application of IPCMSF for the study of a three-dimensional turbulent subsonic
compressible Rayleigh–Bénard flow with a “real-fluid” equation of state. The considered thermody-
namic point has been chosen to evaluate the very strong materials properties influence on the fluid
flow.

Only a few research teams have focused on the study of supercritical fluid flows, often near the
critical point and using cubic EoS [65, 66, 67]. The study of turbulence under NOB is beginning to be
addressed thanks to DNS numerical experiments either considering water [68] or a supercritical fluid,
in the chosen transition zone [69]. Demou and Grigoriadis [68] identified fewer than ten such studies in
their bibliography. The present investigation builds upon these efforts and it stands out from previous
RB studies that used simpler EoS and considered certain constant properties [65, 66, 67]. We will
thus propose advanced numerical simulations from a thermodynamic point of view that will provide a
better knowledge of turbulence in these complex fluids where NOB effects seem to predominate [70].
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Figure 9: Time averaged temperature 〈T 〉 pseudocolor with velocity vectors field at tf = 5.0051×103 s (a) and the
corresponding horizontal time-averaged dimensionless temperature profiles at differents vertical positions (b). Time
evolution of the instantaneous dimensionless x-velocity u(x=0.95L, y=0.05L, t)/u0 (c) and instantaneous dimensionless
temperature T (x=0.85L, y=0.05L, t)/T0 (d) during the last five periods. Power Density Spectrum of the Discret Fourier
Transform (DFT) for dimensionless x-velocity flucturation (e) and temperature flucturation (f). CFLac = 2.5×103,
Chebyshev mesh size 2562, tf =100teddy=5.0051×103 s. The probes localisations for (c,d,e,f) plots are drawn on (a).
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Figure 10: Temperature dependence of specific heat at constant pressure cp (a) and density (b) at 80 bar. Comparison
between Peng–Robinson EoS (blue solid line with triangle symbol), refprop NIST (red solid line with circle symbol)
and Artifical Neural Network (black solid line with square symbol).

The following section aims to demonstrate the method’s ability to handle complex flows by accu-
rately capturing the intricate thermodynamics and turbulent dynamics of a supercritical fluid. The
last section shows that the combination of Hypre’s library linear system solvers with the Notus CFD
code ensures very good scalability on a petascale supercomputer, which is necessary to handle DNS of
turbulent flows at high Rayleigh numbers.

7.1. Three-dimensional simulation of supercritical carbon dioxide natural convection
We consider a Rayleigh–Bénard configuration in a three-dimensional cubic cavity of length L =

3.41×10−3 m filled with supercritical carbon dioxide. A vertical temperature difference (∆T ) is im-
posed between the horizontal walls, while the sidewalls are insulated. The top and bottom wall
temperatures are respectively cooled and heated (Tcold=306 K and Thot=310 K). For velocity bound-
ary conditions, no slip conditions are considered. The dimensionless parameters of the case, computed
from initial pressure and temperature (T0, p0)= (308 K, 80 bar), are Ra0 = 109, Ma0 = 1.15×10−4

(considering the reference velocity u0=
√
εLg), Pr0=1.14×101, ε=1.3×10−2.

A complete description of the modelling of the Rayleigh–Bénard turbulent convection problem is
beyond the scope of this section. Instead, we focus on the crucial aspect of the accurate calcula-
tions of the fluid’s thermophysical properties, which strongly depend on temperature and pressure.
The chosen modelling considers fully pressure- and temperature-dependent thermophysical properties
x(p, T ) based on the NIST refprop library [64]. Pressure and temperature ranges correspond to a
specific thermodynamic area where the fluid properties significantly change (see Figure 10 and notice
the ranges of βp ∈ [1.89×10−2, 3.68×10−1]K−1 and χT ∈ [5.05×10−8, 2.21×10−6]Pa−1 in the consid-
ered temperature and pressure ranges), mentally delimited by the crossing of the “Widom Line” [71].
This pseudo boiling line acts as a diffused frontier between gas-like and liquid-like properties of a
supercritical fluid, which modify significantly the mass and thermal transport phenomena across this
line.

The prohibitive computational cost of evaluating all fluid properties using refprop, which is not
designed for high-performance computing applications, led us to explore the use of Artificial Neural
Networks (ANNs) as an efficient alternatives Banuti [72]. These ANNs, trained on refprop dataset,
are used as EoS and can be viewed as efficient interpolation functions striking a balance between com-
putational efficiency and accurate thermodynamic calculations. The ANN-based method relies on the
construction of relatively small neural networks that can represent strong variations in thermodynamic
properties (Figure 10), using a unique and easy-to-implement approach. This method eliminates the
need for large data tables, which typically require extensive discretization as a function of pressure and
temperature to accurately capture steep property gradients. For instance, Rinaldi et al. [73] report
the need for 100 grid points per direction, while S. Kawai et al. [74] use a 2D density-pressure grid of
2000× 2000 points, claiming it provides a sufficient number of data points at transcritical conditions.
The present method uses a neural network with just four neurons in a single hidden layer and a hyper-
bolic tangent activation function to capture strong property variations. This configuration corresponds
to only 37 parameters (weights and biases of the input, hidden, and output layers). Sharing these 37
parameters is significantly more valuable than distributing a large 2D data table for a single material
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property. The apparent simplicity of the table approach could be reconsidered in light of the widely
available machine learning toolkits, which make the ANN-based method straightforward to implement
(requiring only matrix-vector operations), even though a detailed CPU time comparison between the
different approaches should be adressed.

DNS simulations allow direct access to turbulence without additional modelling and capture phe-
nomena at all scales of the problem, down to the smallest spatial scale, i.e. the Batchelor scales in
this application where Pr> 1. The flow dynamics are characterized by intense and chaotic bursts of
thermal plumes originating from the boundary layers. These plumes interact with the bulk region,
driving a dynamic large-scale flow. To accurately capture these phenomena, a uniform mesh is em-
ployed, ensuring proper discretization of both the near-wall regions and the bulk. This approach allows
for adequate resolution of the plumes as they detach from the boundary layers and penetrate into the
bulk zone [66, 75, 70].

We estimated the required mesh size for DNS simulations using the approach outlined by Shishkina
et al. [75], which focuses on the boundary layer structure in turbulent convection for incompressible
flows. Based on this study, the estimated Kolmogorov and Batchelor space scales were ηK =2.33×10−5

m, ηB =6.92×10−6 m, respectively. Considering a uniform grid, we choose a mesh size of 7683 (grid
size of ∆ = 4.45×10−6 m) with the consideration of a safety factor regarding a priori estimations. An
a posteriori study on the prescribed mesh size allowed to verify the DNS character of the simulation,
i.e. we compared the minimal and mean values of the Batchelor scale to the grid size: ∆ = 4.45×10−6

m vs ηmin
B =3.48×10−6 m and ηmean

B =5.72×10−6 m. The numerical schemes are the same as for the
other test cases (see Section 4). An adaptative time step based on CFLac=4×103 has been imposed
which approximatively corresponds along the simulation to ∆t = 8×10−5s. This range of time step
is way smaller than the smallest turbulent timescale, e.g. the Kolmogorov and Batchelor timescales
are respectively τK = 5.69×10−3 s and τB = 1.68×10−3 s. The simulation until final time took seven
job submission of 24 hours on 8,192 cores in the full MPI approach on the Rome partition of TGCC
French cluster.

Figure 11 presents the spatially averaged Nusselt numbers of the top and bottom surfaces for both
instantaneous and time averaged values, noted 〈·〉. We identify three phases, starting from the onset
of convection (t ∈ [0, 0.7]s), followed by the transitional phase (t ∈ [0.7, 2]s), and finally reaching the
fully turbulent regime until the final time tf = 11.1 s, with relative time averaged Nusselt numbers
stationnarities below 5×10−7. The final time averaged spatially averaged Nusselt are respectively for
top and bottom 〈Nutop〉 = 4.6262×101 and 〈Nutop〉 = 4.6099×101. We compared our results with the
correlation provided by Demou and Grigoriadis [68] considering NOB effects in a 3D Rayleigh–Bénard
cavity filled with water. At Ra0 = 109, their study reported Nusselt numbers of Nu = 60.31 for the
3D case and Nu = 50.11 for the 2D case. In our 3D simulation with supercritical CO2, the Nusselt
number, representing the ratio of total heat transfer to conductive heat transfer, is 23% lower than
the 3D result in [68]. Note that water is considered in [68], along with periodic boundary conditions
in the y-direction, which enable the use of a FFT solver. For completeness, the 2D version of our case
yields a Nusselt number of 38.85, which is 22% lower than the corresponding value in [68].

We present in Figure 12 the instantaneous snapshot of temperature field during the turbulent
regime at t = 4.9 s. It provides an overview of the flow field structures when turbulent regime is well
established within the cavity where detaching plumes from the two top and bottom thermal boundary
layers enter the bulk zone viewed with very low opacity.

This section demonstrates the capability of the method to simulate a turbulent Rayleigh–Bénard
flow considering highly variable thermophysical properties in a highly compressible fluid. Others
simulations will be proposed further to enable an in-depth study of turbulence in fluids with strongly
varying properties through a parametric analysis based on the Rayleigh number. Addressing higher
Rayleigh number flows in further work, such as Ra0=1010 with a mesh size larger than 10243, requires
a thorough analysis of the performance and scalability of our IPCMSF implementation to optimize the
huge amount of resources allocated to perform this type of simulation.

7.2. Performance and scalability assessments
We conduct in this section a comprehensive performance and parallelization efficiency analysis for

the three-dimensional DNS application described in Section 7.1, utilizing the Rome partition of the
TGCC French infrastructure for scientific high-performance computing. In this section, we focus on
the performance of the code for fully implicit compressible subsonic flow using IPCMSF.
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Figure 12: Three-dimensional SLIVR volume rendering of the temperature field (yellow and dark purple respectively
stands for 310 K and 306 K) during the turbulent regime at t = 4.9s.
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1 thread/process MPI 2 threads/process MPI 4 threads/process MPI 8 threads/process MPI
Time/iterations (s) Efficiency Time/iterations (s) Efficiency Time/iterations (s) Efficiency Time/iterations (s) Efficiency

Core number Total Hypre Total Hypre Total Hypre Total Hypre
8192 8.313 5.521 1.000 7.594 4.809 1.000 8.491 4.898 1.000 14.800 8.581 1.000

16384 6.075 4.224 0.684 5.204 3.401 0.730 5.336 3.217 0.796 8.419 5.260 0.879

32768 6.256 4.618 0.332 4.189 2.746 0.453 3.789 2.441 0.560 4.675 2.730 0.791

65536 8.463 6.592 0.123 5.169 3.608 0.184 4.189 2.636 0.253 4.711 2.970 0.393

Table 12: Strong scalability test with a constant mesh size of 10243 ∼ 1.07×109 cells from a full MPI to a hybrid
OpenMP/MPI programming paradigm with one, two, four or eight threads per process MPI. Total and Hypre wall clock
time spent per iteration are measured. The efficiency is computed considering the total time per iteration. Fully implicit
resolution with second-order centered schemes for advection and diffusion, BDF2 temporal scheme.

The Notus CFD code’s parallel implementation is based on both full MPI and hybrid MPI/OpenMP
paradigms. Both implementations were tested on the architecture environment of the Rome partition,
which comprises 128 cores per node (AMD Rome@2.6 GHz), 228 GB of RAM per node, and a total of
292,608 cores. In prior work [42] focused on incompressible turbulent flows, communication bottlenecks
between MPI processes were identified, and these were mitigated by shifting from a full MPI to the
hybrid OpenMP/MPI approach. The latter allowed us to drastically reduce communication’s overhead
and improve scalability, particularly for larger numbers of cores up to 131,072 cores.

Given the complexity of performance evaluation across different applications and architecture, as
well as the need to explore scalability in terms of both core numbers and problem size (e.g., simulating
higher Rayleigh numbers in Rayleigh–Bénard flows), we present strong and weak scalability tests.
Tables 12 and 13 compare the performance of full MPI and hybrid MPI/OpenMP approaches, providing
the total and Hypre wall clock times per iteration along with the corresponding efficiencies.

Table 12 presents the strong scalability test for a problem size of 10243 ∼ 1.07×109 cells. By
increasing the number of cores while keeping the constant mesh size, we evaluate the efficiency of
workload reduction per core, ideally following Amdahl’s law. The initial configuration of 8,192 cores
was selected based on prior tests, which showed that 131,072 cells per core yields near-ideal efficiency.
For the final configuration of 65,536 cores, the workload is reduced to 16,384 cells per core. In the full
MPI implementation, maintaining reasonable efficiency (around 70%) requires a minimum workload
of 65,536 cells per core. The hybrid MPI/OpenMP approach, using up to 8 threads per MPI process,
significantly enhances performance by reducing communication overhead, particularly at higher core
counts. For instance, in the 16,384 core-run, efficiency increased from 0.684 with full MPI to 0.879 with
8 threads per process. This reduction in overhead improves resource utilization, as seen in the 32,768
core simulation, where efficiency rose from 0.331 to 0.791 for this type of mesh size. Thanks to the
hybrid paradigm, we improve the strong scalability by reducing communication overhead, especially
for large number of cores.

Table 13 shows the weak scalability results considering 403 cells per core and goes up to 131,072
cores, corresponding to half of the Rome partition at TGCC. By increasing both the problem size
and the core count, we evaluate code performance while maintaining a constant workload of approxi-
mately 64,000 cells per core. This workload ensures very good efficiency for both full MPI and hybrid
MPI/OpenMP approaches, as shown in Table 12. As the number of cores grows, the problem size
increases proportionally, yet the total computation time per iteration only rises slightly due to efficient
parallelization. This scalability allows the simulation of significantly larger problems with minimal
impact on iteration time. Starting with a mesh size of 8.2 million cells, we scale up to 8.4 billion cells,
increasing the problem size by a factor of 1,000. For the 8,192 core-run, we observed an efficiency
increase from 0.558 to 0.715 as we shifted from full MPI to the hybrid MPI/OpenMP approach. How-
ever, when scaling up further, beyond the 32,768 cores, the efficiency starts to decline. This decrease
in efficiency is primarily due to increased communication time as more nodes are added. While the
workload per core remains constant, the communication overhead increases and stresses the cluster
interconnection technology (latency and limited bandwidth), which limits the scalability. Notably, at
131,072 cores - half of the Rome partition - the efficiency dropped to approximately 0.171 for the full
MPI configuration but increased to 0.236 with 2 threads and 0.299 with 4 threads. At this point, the
MPI communication time breaks efficiency and suggests that the number 403 cells per core should be
increase to achieve higher efficiency. These values must be interpreted in the context of the problem
size being scaled up by a factor of 1,000. Although the weak efficiency decreases, the ability to simulate
a problem 1,000 times larger with a CPU time ratio per time iteration of only 3.3 demonstrates the
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1 thread/process MPI 2 threads/process MPI 4 threads/process MPI
Time/iterations (s) Efficiency Time/iterations (s) Efficiency Time/iterations (s) Efficiency

Core number Mesh size Total Hypre Total Hypre Total Hypre
128 8.2×106 2.795 1.624 1.000 2.732 1.490 1.000 3.260 1.579 1.000

512 3.3×107 3.012 1.797 0.928 2.948 1.601 0.927 3.422 1.721 0.953

2048 1.3×108 3.402 2.095 0.822 3.266 1.907 0.837 3.654 1.882 0.892

8192 5.2×108 5.004 3.415 0.558 4.401 2.735 0.621 4.561 2.561 0.715

32768 2.1×109 8.254 5.855 0.339 6.006 3.904 0.455 6.910 4.211 0.472

131072 8.4×109 16.300 8.436 0.171 11.560 7.915 0.236 10.910 6.210 0.299

Table 13: Weak scalability test with a constant 403 cells per core from a full MPI to a hybrid OpenMP/MPI programming
paradigm with one, two and four threads per MPI processes. Total Time per iteration of Total, Notus and Hypre linear
system resolution are shown. The efficiency is computed considering the total wall clock time per iteration. Fully implicit
resolution with second-order centered schemes for advection and diffusion.

overall good scalability of the code.
In summary, we have shown that the parallelization approach and proposed numerical methods can

handle very large-scale simulations efficiently. The hybrid MPI/OpenMP implementation continues
to show improvements, especially in handling communication overhead for large-scale runs. IPCMSF
poses no significant challenge for parallel solving using the PFMG preconditioner.

8. Conclusions and perspectives

In this article, we propose an original pressure-based method for compressible flows that can be
sought as a generalization of the incremental pressure correction method of incompressible flows to
compressible flows.

The method has been spatially and temporally second-ordered verified, with solutions to flows
with Mach number up to 0.6. No significant differences in error magnitudes or second-order temporal
convergence were observed, for all the solved fields, when comparing the incremental (IPCMSF) and
non-incremental (PCMSF) versions of the algorithm (contrary to what is observed for incompressible
flows). The IPCMSF method is validated with both steady and unsteady compressible flows, featuring
very large temperature ratio across the domain, thermoacoustic wave propagations in perfect gas as
well as very close to the critical point.

The implicit resolution of the pressure field contributes to the increased numerical stability through
the utilization of a very large acoustic CFL number whenever the nature of the test case allows for
such a large time step, particularly in steady test cases. This results in significant computational
time savings. When fluid properties satisfy the incompressible assumption, the method tends to the
incompressible incremental pressure correction method.

We finally present a DNS of a three-dimensional turbulent Rayleigh–Bénard compressible flow at
Ra = 109 of supercritical carbon dioxide with significant thermophysical properties variations. We
also report on this application the performance and scalability results of the implementation of the
method, up to 131,072 cores. These results provide new insights into the modelling and simulation of
high-pressure and/or high-temperature processes involving complex working fluids such as supercritical
CO2.

Moreover, although the method is able to simulate pressure wave propagation, the second-order
time discretization of the generalized pressure wave equation (20) remains challenging.

The results obtained from the current work thus makes it feasible to advance this approach to more
complex scenarios and physical problems such as flows with open and traction boundary conditions
in order to avoid reflections at outflow boundaries [76, 77], multiphase flows under the one-fluid com-
pressible Navier-Stokes equations where both phases could exhibit varying different compressibility
and be governed by different equation of state, and reactive flows both in open and closed systems.
At this point, it should be noted that while the IPCMSF and PCMSF versions of the algorithm do
not exhibit significant differences for single-phase compressible problems, in the case of multiphase
flow where one of the phases is incompressible, the proposed IPCMSF approach is expected to provide
increased precision in that phase, thereby improving global convergence.

Another interesting direction for further investigation would be to follow the approach proposed
by Dodd and Ferrante [78] for incompressible flows, which consists of replacing the variable coefficient
in the pressure increment equation (13) or (18) with constant coefficients, involving only a Laplacian
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operator. This approach is expected to yield a significant reduction in CPU time and also opens the
possibility of using highly efficient FFT-based solvers.
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Appendix A. Derivation of pressure-energy equation

This section presents the development of the energy conservation expressed in terms of pressure
variable. This alternative form of the energy conservation principal is derived by expanding the material
derivative of pressure as a function of temperature and density

Dp

Dt
=

∂p

∂ρ

∣∣∣∣
T

Dρ

Dt
+

∂p

∂T

∣∣∣∣
ρ

DT

Dt
, (A.1)

with the material derivative of any scalar and vector fields “∗” being defined as

D∗
Dt

=
∂∗
∂t

+ v ·∇ ∗ . (A.2)

Using mass conservation (1a) and introducing the respective thermodynamic coefficients of isobaric
thermal expansion and isothermal compressibility, defined as follows

βp = −1

ρ

∂ρ

∂T

∣∣∣∣
P

and χT =
1

ρ

∂ρ

∂p

∣∣∣∣
T

, (A.3)

equation (A.1) reads

Dp

Dt
= − 1

χT
∇ · v +

βp

χT

DT

Dt
. (A.4)

Whether we consider the conservation of energy in cp formulation (1c) or in cv formulation,

ρcv

(
∂T

∂t
+ v ·∇T

)
= −Tβp

χT
∇ · v +∇ · (λ∇T ) + Φd , (A.5)

we obtain a unique equation of the conservation of energy expressed in pressure variable. In both
cases, after introducing (A.5) or (1c) into equation (A.4) and grouping terms, we get

• in the cv (A.5) formulation

Dp

Dt
= −

(
1

χT
+

Tβ2
p

ρcvχ2
T

)
∇ · v +

βp

ρcvχT
(∇ · (λ∇T ) + Φd) , (A.6)

• in the cp (1c) formulation(
1−

Tβ2
p

ρcpχT

)
Dp

Dt
= − 1

χT
∇ · v +

βp

ρcpχT
(∇ · (λ∇T ) + Φd) . (A.7)
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It can be demonstrated that equations (A.6) and (A.7) are identical using several thermodynamic
relations, i.e. Mayer relation Tβ2

p

/
(ρcvχT )=γ−1, ratios of specific heats γ=cp/cv=χT /χs, definition

of the speed of sound c2=1/(χsρ). These relations allow us to write the following equalities

1

χT
=

ρc2

γ
,

Tβ2
p

ρcvχT
= γ − 1 and

βp

ρcvχT
=

βpc
2

cp
. (A.8)

Using relations (A.8) in both equations (A.6) and (A.7), we obtain the equation which express the
conservation of energy in terms of pressure variable (A.9). The introduced equations do not involve
any hypothesis about the considered fluid.

By applying the conservation of energy (1c) in conjunction with thermodynamic relations followed
by few algebraic manipulations, we obtain

Dp

Dt
= −ρc2∇ · v +

βpc
2

cp
(∇ · (λ∇T ) + Φd) , (A.9)

with c denoting the speed of sound.
The pressure-energy conservation equation for incompressible flow reduces to ∇ ·v=0 (c → ∞ and

βp=0), i.e. Dρ
/
Dt=0, which is consistent with the incompressibility limit.

Appendix B. Method of Manufactured Solutions

As discussed earlier in Section 5.3, source terms appear from the method of manufactured solution
and they are added in the right-hand side of all resolved equations. In the case of an anisothermal
flow without viscous dissipation rate of energy and not subject to gravity, it is necessary to add three
source terms for the resolved momentum, energy and pressure equations as

Ṡv = ρ
Dv

Dt
+∇p−∇ · (µγ̇) + 2

3
∇ (µ∇ · v) , (B.1a)

Ṡe = ρcp
DT

Dt
− Tβp

Dp

Dt
−∇ · (λ∇T ) , (B.1b)

Ṡp =
Dp

Dt
+ ρc2∇ · v −

(
βpc

2

cp

)(
∇ · (λ∇T ) + Ṡe

)
. (B.1c)

As we do not solve energy considering isothermal flow, we only compute two source terms for momen-
tum and pressure equations. The isothermal pressure source term reads

Ṡp =
Dp

Dt
+ ρc2∇ · v . (B.2)

As we consider a perfect gas in Section 5.3, the time- and space-dependent thermodynamic properties
of the fluid are computed as ρ=p/RT , χT =1/p, βp=1/T and c2=γp/ρ.

For the sake of reproducibility, the source terms of the isothermal manufactured solution (see
Section 5.3.1) is given below. They are the result of the differentiation of equations (B.1a) and (B.2)
The momentum and pressure source terms read respectively
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Test-case T ∗ in K µ∗ in Pa s λ∗ in Wm−1 K−1

Le Quéré et al. [10] case T2 273 1.68×10−5 2.38×10−2

Bouafia and Daube [57] 300 1.68×10−5 2.38×10−2

Wen et al. [58] 273 2.96×102 2.30×10−1

Table C.14: Values of the parameters of Sutherland’s law for the proposed test cases. All test cases have the same
S=110.5.

Ṡvx =4π2µu0 cos(2πft)
{
sin2(πx) sin(2πy)− sin(2πy) cos2(πx) (B.3)
+sin2(πx) sin(2πy)− sin(πy) cos(2πx) cos(πy)

}
+

2µ

3
u0 cos(2πft)

{
2π2 sin(2πy) cos2(πx)− 2π2 sin2(πx) sin(2πy)

+4π2 sin(πy) cos(2πx) cos(πy)
}

+ p1π cos(2πft) cos(πx) sin(πy)

+ 2πu0
p(x, y, t)

T0R

{
−f sin2(πx) sin(2πy) sin(2πft)

+ u0 sin
3(πx) sin2(2πy) cos(πx) cos2(2πft)

+u0 sin
2(πx) sin(2πx) sin2(πy) cos(2πy) cos2(2πft)

}
,

Ṡvy
=4π2µu0 cos(2πft)

{
sin(2πx) sin2(πy)− sin(2πx) cos2(πy) (B.4)
− sin(πx) cos(πx) cos(2πy) + sin(2πx) sin2(πy)

}
+

2µ

3
u0 cos(2πft)

{
2π2 sin(2πx) cos2(πy)− 2π2 sin(2πx) sin2(πy)

+4π2 sin(πx) cos(πx) cos(2πy)
}

+ p1π cos(2πft) cos(πy) sin(πx)

+ 2πu0
p(x, y, t)

T0R

{
−f sin(2πx) sin2(πy) sin(2πft)

+ u0 sin
3(πy) sin2(2πx) cos(πy) cos2(2πft)

+u0 sin
2(πx) sin2(πy) sin(2πy) cos(2πx) cos2(2πft)

}
,

Ṡp =πp1u0 cos
2(2πft)

{
sin2(πx) sin(πy) sin(2πy) cos(πx) + sin(πx) sin(2πx) sin2(πy) cos(πy)

}
(B.5)

+ γ2πu0p(x, y, t) cos (2πft) {sin(πx) sin(2πy) cos(πx) + sin(2πx) sin(πy) cos(πy)}
− 2πfp1 sin(πx) sin(πy) sin(2πft) .

Sources terms have been computed using the symbolic computing python module sympy. Due to
the long analytical expressions of the source terms for the anisothermal manufactured solution (see
Section 5.3.2), we do not include them in the appendix. We refer the reader to the initialization file of
each test case available in the Notus CFD repository [41].

Appendix C. Parameter values of material laws

For the sake of easily reproducible verification and validation process, we present in Table C.14 the
values of Sutherland’s law parameters used in our test cases. We recall Sutherland’s law for a material
properties x

x(T ) = x∗T
∗ + S

T + S

( T

T ∗

)3/2
, (C.1)

with x∗, T ∗ and S the three parameters of the law.
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∆t in s ||εp||L2 order ||εp||L∞ order ||εT ||L2 order
4.00×10−4 1.381×10−2 n/a 1.381×101 n/a 2.381×10−7 n/a
2.00×10−4 3.405×10−3 2.020 3.405 2.020 7.652×10−8 1.638

1.00×10−4 8.381×10−4 2.022 8.382×10−1 2.022 2.351×10−8 1.703

5.00×10−5 1.966×10−4 2.092 1.967×10−1 2.092 9.949×10−9 1.240

2.50×10−5 5.342×10−5 1.879 5.352×10−2 1.877 1.156×10−9 3.106

1.25×10−5 1.304×10−5 2.035 1.314×10−2 2.026 3.850×10−10 1.586

∆t in s ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
4.00×10−4 2.382×10−4 n/a 1.092×10−7 n/a 1.092×10−4 n/a
2.00×10−4 7.652×10−5 1.638 2.705×10−8 2.013 2.705×10−5 2.013

1.00×10−4 2.351×10−5 1.703 6.693×10−9 2.015 6.694×10−6 2.015

5.00×10−5 9.955×10−6 1.240 1.601×10−9 2.063 1.602×10−6 2.063

2.50×10−5 1.162×10−6 3.099 4.242×10−10 1.917 4.250×10−7 1.915

1.25×10−5 3.912×10−7 1.570 1.043×10−10 2.024 1.051×10−7 2.015

Table D.15: PCMSF temporal order accuracy of the isentropic injection test case. First time step ∆t=4×10−4 s equal
to CFLac=1.78×104. Mesh size 1282, tf =1×10−1 s.

The viscosity and conductivity law of the thermoacoustic wave propagation of Huang and Bau [59]
has been set by a quartic temperature law polynomial. Material properties x is thus computed as

x(T ) =

3∑
i=0

axiT
i , (C.2)

with axi the ith constant parameter in [x]K−i with [x] the unit of x. We set for viscosity and conduc-
tivity respectively

(aµ0, aµ1, aµ2, aµ3) = (1.24×10−6, 6.32×10−8,−4.65×10−11, 2.01×10−14) , (C.3)
(aλ0, aλ1, aλ2, aλ3) = (−7.26×10−4, 9.76×10−5,−7.18×10−8, 3.10×10−11) . (C.4)

Appendix D. Temporal convergence results of the verification part for the pressure
correction method for compressible flows

36



∆t in s ||εv||L2
order ||εv||L∞ order ||εp||L2

order
2.00×10−4 3.840×101 n/a 6.169×101 n/a 5.521×103 n/a
1.00×10−4 1.478×101 1.377 2.524×101 1.289 1.845×103 1.581

5.00×10−5 4.260 1.795 7.839 1.687 5.349×102 1.786

2.50×10−5 1.114 1.935 2.099 1.901 1.405×102 1.929

1.25×10−5 2.863×10−1 1.960 5.454×10−1 1.944 3.582×101 1.971

6.25×10−6 7.666×10−2 1.901 1.469×10−1 1.892 9.573 1.904

∆t in s ||εp||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 1.373×104 n/a 6.412×10−2 n/a 1.595×10−1 n/a
1.00×10−4 5.012×103 1.454 2.143×10−2 1.581 5.821×10−2 1.454

5.00×10−5 1.646×103 1.607 6.212×10−3 1.786 1.912×10−2 1.607

2.50×10−5 4.416×102 1.898 1.632×10−3 1.929 5.129×10−3 1.898

1.25×10−5 1.131×102 1.965 4.161×10−4 1.971 1.314×10−3 1.965

6.25×10−6 2.988×101 1.921 1.112×10−4 1.904 3.470×10−4 1.921

Table D.16: PCMSF temporal order accuracy of the isothermal high Mach manufactured solution. First time step
∆t=2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.

∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.671×101 n/a 7.153×101 n/a 5.846×103 n/a 1.905×104 n/a
1.00×10−4 1.354×101 1.439 2.449×101 1.546 1.866×103 1.648 5.326×103 1.839

5.00×10−5 3.857 1.811 6.855 1.837 5.199×102 1.844 1.555×103 1.776

2.50×10−5 1.008 1.935 1.834 1.902 1.349×102 1.946 4.046×102 1.943

1.25×10−5 2.587×10−1 1.963 4.769×10−1 1.944 3.414×101 1.982 1.057×102 1.936

6.25×10−6 6.857×10−2 1.916 1.294×10−1 1.882 8.946 1.932 2.825×101 1.904

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 6.862 n/a 3.303×101 n/a 5.182×10−2 n/a 1.888×10−1 n/a
1.00×10−4 2.478 1.469 8.697 1.925 1.705×10−2 1.603 4.490×10−2 2.072

5.00×10−5 6.791×10−1 1.868 2.413 1.850 4.738×10−3 1.848 1.406×10−2 1.675

2.50×10−5 1.760×10−1 1.948 6.314×10−1 1.934 1.233×10−3 1.942 4.035×10−3 1.801

1.25×10−5 4.506×10−2 1.965 1.616×10−1 1.967 3.142×10−4 1.973 1.067×10−3 1.919

6.25×10−6 1.214×10−2 1.892 4.273×10−2 1.919 8.324×10−5 1.916 2.858×10−4 1.900

Table D.17: PCMSF temporal order accuracy of the anisothermal high Mach subsonic manufactured solution. First
time step ∆t=2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.
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∆t in s ||εv||L2 order ||εv||L∞ order ||εp||L2 order ||εp||L∞ order
2.00×10−4 3.7293×10−1 n/a 8.8203×10−1 n/a 2.1545×102 n/a 4.5007×102 n/a
1.00×10−4 1.3905×10−1 1.4230 3.1777×10−1 1.4730 6.5280×101 1.7230 1.5497×102 1.5380

5.00×10−5 4.1078×10−2 1.7590 9.1070×10−2 1.8030 1.8298×101 1.8350 5.2502×101 1.5620

2.50×10−5 1.0988×10−2 1.9020 2.3610×10−2 1.9480 4.7298 1.9520 1.4277×101 1.8790

1.25×10−5 2.8200×10−3 1.9620 6.0093×10−3 1.9740 1.1912 1.9890 3.6296 1.9760

6.25×10−6 7.1785×10−4 1.9740 1.5043×10−3 1.9980 2.9928×10−1 1.9930 9.1812×10−1 1.9830

∆t in s ||εT ||L2 order ||εT ||L∞ order ||ερ||L2 order ||ερ||L∞ order
2.00×10−4 4.1657 n/a 1.3491×101 n/a 1.8571×10−2 n/a 6.5706×10−2 n/a
1.00×10−4 8.7463×10−1 2.2520 2.4994 2.4320 3.7121×10−3 2.3230 1.1901×10−2 2.4650

5.00×10−5 1.9027×10−1 2.2010 4.3358×10−1 2.5270 7.8204×10−4 2.2470 2.0998×10−3 2.5030

2.50×10−5 4.5704×10−2 2.0580 1.1716×10−1 1.8880 1.8187×10−4 2.1040 5.1266×10−4 2.0340

1.25×10−5 1.1398×10−2 2.0040 3.1931×10−2 1.8750 4.4410×10−5 2.0340 1.3708×10−4 1.9030

6.25×10−6 2.8613×10−3 1.9940 8.3194×10−3 1.9400 1.1023×10−5 2.0100 3.5404×10−5 1.9530

Table D.18: PCMSF temporal order accuracy of the anisothermal low Mach manufactured solution. First time step
∆t=2×10−4 s equal to CFLac=1.78×101. Mesh size 2562 and tf =2×10−3 s.
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