Dr. Antoine Lemoine
Contact
Antoine LEMOINEENSCBP  I2M
16, av. PeyBerland
33607 Pessac CEDEX
France
+33 5 40 00 66 81
antoine.lemoine@ipb.fr
Positions
 Associate professor at I2M and ENSEIRBMATMECA, since September 2016.
 Postdoc. at I2M in collaboration with CEA/CELIA, since May 2015. Interface reconstruction methods
 Project: Development of the Notus CFD solver, implementation of the MomentofFluid method (2D/3D) and coupling with other methods.
 Applications: multiphase flow, phase change
 Supervisors: Stéphane Glockner, Jérôme Breil
 ATER at ENSEIRBMATMECA, from September 2014 to May 2015
 Project: Development of the Notus CFD solver, implementation of the VolumeofFluid method (2D/3D).
 PhD. at I2M, from November 2011 to September 2014 (defended the November 27^{th} 2014). Discrete HelmholtzHodge Decomposition
 Project: Development of various methods to compute the discrete HelmholtzHodge decomposition on polyhedral meshes using Compatible Discrete Operators.
 Applications: structure detection in turbulent flows
 Supervisors: JeanPaul Caltagirone, Mejdi Azaïez, Stéphane Vincent
 Engineering school ENSEIRBMATMECA
 Fluid mechanics, multiphase flow, turbulence, numerical analysis, finite volume method, finite element method, highorder methods, highperformance computing
Research interests
Physics
 Incompressible NavierStokes
 Coherent structure detection
 Multiphase flow
 Interfaces (reconstruction, transport, phase change, etc.)
Numerics
 Mimetic schemes (Compatible Discrete Operators)
 High Performance Computing
 VolumeofFluid
 MomentofFluid
Skills
Scientific skills
 Applied mathematics: Finite volumes, Compatible Discrete Operators, Mimetic schemes, VolumeofFluid method, MomentofFluid method, numerical analysis, finite elements, highorder methods, highperformance computing
 Mechanics: fluid mechanics, turbulence, coherent structure detection, multiphase flow, continuum mechanics
Computing skills
 Programming languages: Fortran 2008, C++, C, Python, Bash, MPI, CUDA, LaTeX
 Scientific software: Notus, OpenFOAM, Fluent, Abaqus, VisIt, ParaView, Avizo, Tecplot
 Operating systems: GNU/Linux (Gentoo, Arch Linux, Debian, Ubuntu)
 Miscellaneous: CMake, Git, Vi/Vim/Neovim
Papers
 Antoine Lemoine, Stéphane Glockner, and Jérôme Breil. MomentofFluid Analytic Reconstruction on 2D Cartesian Grids. Journal of Computational Physics, volume 328, 1 January 2017, pages 131–139. DOI: 10.1016/j.jcp.2016.10.013
 Antoine Lemoine, JeanPaul Caltagirone, Mejdi Azaïez, and Stéphane Vincent. Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes using Compatible Discrete Operators. Journal of Scientific Computing, pages 1–20, 2014. DOI: 10.1007/s1091501499528
 Etienne Ahusborde, Mejdi Azaiez, JeanPaul Caltagirone, Mark Gerritsma, and Antoine Lemoine. Discrete HodgeHelmholtz Decomposition. Monografías Matemáticas "García de Galdeano", Prensas Univ. Zaragoza, (39) :1–10, 2014.
 Antoine Lemoine, JeanPaul Caltagirone, Mejdi Azaïez, and Stéphane Vincent. Décomposition de HodgeHelmholtz discrète. 21ème congrès français de mécanique, AFM. Maison de la Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France, 2013.
Talks
Conferences
 MomentofFluid Analytic Reconstruction on Cartesian Grids, ECCOMAS Congress, 2016, Crete Island
 Décomposition de HodgeHelmholtz discrète, Congrès Français de Mécanique, 2013, Bordeaux
Invitations
 MomentofFluid Analytic Reconstruction on 2D Cartesian grids, Florida State University, 25 Jan. 2016, Tallahassee
 MomentofFluid Analytic Reconstruction on 2D Cartesian grids, Los Alamos National Laboratory, 22 Jan. 2016, Los Alamos
 MomentofFluid on Cartesian grids, Analytic reconstruction on 2D Cartesian grids, Laboratoire Jean Kuntzmann, 14 Jan. 2016, Grenoble
Others
 MomentofFluid on Cartesian grids, Analytic reconstruction on 2D Cartesian grids, cluster CPU, Université de Bordeaux, 15 Jan. 2016, Talence
 MomentofFluid on Cartesian grids, interface representation & reconstruction, Groupe de Travail MFN, 19 Nov. 2015, Pessac
 Décomposition de HodgeHelmholtz discrète, Groupe de Travail MFN, 12 Jan. 2012, Pessac
Teaching
Context  Levels  Subjects  Types and volumes 

Contractor position (2011  2013)  1^{st} year ENSCBP  Mechanics of vibration  48 h TP (practicals) 
Assistant lecturer (2014  2015)  1^{st} year ENSEIRBMATMECA  Algorithmics and programming  88 h TP 
2^{nd} year ENSEIRBMATMECA  Numerical analysis  26 h TD (tutorials)  
1^{st} year ENSEIRBMATMECA  Scientific computing in Fortran 90  64 h TP  
2^{nd} year ENSEIRBMATMECA  Fluid mechanics  20 h TD  
Postdoc (2015  2016)  1^{st} year ENSEIRBMATMECA  Introduction to fluid mechanics  18 h TD 
1^{st} year ENSEIRBMATMECA  Fluid mechanics  20 h TD  
2^{nd} year ENSEIRBMATMECA  Fluid mechanics  20 h TD  
2^{nd} year ENSEIRBMATMECA  Fluent projects  20 h TD  
TOTAL  124 h TD and 200 h TP 
Gallery
Nested dissection of a truncated tetrahedron 
Nested dissection of a cube 
Solidification of molten indium. Left: MOF representation of solid (red) and liquid (blue) indium. Right: Mesh and isovalue of the melting temperature. 

VolumeofFluid and MomentofFluid initialization from surface meshes 

Advection of shapes in a uniform vector field with the MomentofFluid method. Complex shapes are initialized using basic shapes (discs, rectangles), transformations (translation, scale, and rotation) and boolean operators (union, intersection, and difference). 

5 materials advected in a sheared flow by the MomentofFluid method 

Dam break simulation using MomentofFluid method. The color represents the smoothed volume fraction 

Creation of the Notus parser. Features: variable declaration, typed expressions, control structures, scope management 

Discrete HelmholtzHodge decomposition of a 2D slice of a turbulent flow. From left to right: irrotational part, original field, solenoidal part. The color represents the magnitude of the potentials for the irrotational part and the solenoidal part. Vector fields are represented by the LIC method (Line Integral Convolution) 

Example of polyhedral meshes used for the validation of the Discrete HelmholtzHodge decomposition using Compatible Discrete Operators. The meshes come from the FVCA 6 benchmark. 